首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Clear-Water Scour below Underwater Pipelines under Steady Flow   总被引:1,自引:0,他引:1  
Experiments on clear-water scour below underwater pipelines (initially laid on the sediment bed) in uniform and nonuniform sediments under steady flow were conducted. Equilibrium scour profiles were modeled by a cubic polynomial. The experimental results are examined to describe the influence of various parameters on equilibrium scour depth. The equilibrium scour depth ds increases with increase in approach flow depth h for shallow flow depths, becoming independent of higher flow depths when h/b>5, where b=pipe diameter. However, the curves of scour depth versus sediment size d and Froude number Fb have a maximum value of ds/b = 1.65 at b/d = 27 and Fb = 0.6. The influence of sediment gradation on scour depth is prominent for nonuniform sediments, which reduce scour depth to a large extent due to the formation of armor layer within the scour hole. The influence of different shaped cross sections of pipes on the scour depth was investigated, where the shape factors for circular, 45° (diagonal facing) and 90° (side facing) square pipes obtained as 1, 1.29, and 1.91, respectively. Using the data of scour depths at different times, the time variation of scour depth is scaled by an exponential law, where the nondimensional time scale increases sharply with increase in Froude number characterized by the pipe diameter. In addition, clear-water scour below circular pipelines laid on a thinly armored sand bed (the sand bed is overlain by a thin armor layer of gravels) was experimentally studied. Depending on the pipe diameter, armor gravel, and bed-sand sizes, three cases of scour holes were recognized. The comparison of the experimental data reveals that the scour depth below a pipeline with an armor layer under limiting stability of the surface particles (approach flow velocity nearly equaling critical velocity for surface particles) is greater than that without armor layer for the same sand bed, if the secondary armoring formed within the scour hole is scattered. In contrast, the scour depth with an armor layer is less than that without armor layer for the same sand bed, when the scour hole is shielded by the secondary armor layer.  相似文献   

2.
Local scour at circular bridge piers embedded in a clay-sand-mixed bed was investigated in laboratory flume experiments. The effects of clay content, water content, and sand size on maximum equilibrium scour depth, equilibrium scour hole geometry, scouring process, and time variation of scour were studied at velocities close to the threshold velocities for the sand in the clay-sand mixture. It was observed that clay content and water content were the key parameters that effect the scouring process, scour hole geometry, and maximum equilibrium scour depth. The bridge pier scouring process in clay-sand mixtures involved different dominating modes for removal of sediment from scour hole: chunks-of-aggregates, aggregate-by-aggregate, and particle-by-particle. Regression-based equations for estimation of nondimensional maximum scour depth and scour hole diameter for piers embedded in clay-sand mixtures having clay content of <40% and water content of <40% were proposed as functions of pier Froude number, clay content, water content, and bed shear strength.  相似文献   

3.
Time Variation of Scour at Abutments   总被引:2,自引:0,他引:2  
A semiempirical model is presented to compute the time variation of scour depth in an evolving scour hole at short abutments (abutment length/flow depth ? 1), namely the vertical wall, 45° wing wall, and semicircular, in uniform and nonuniform sediments under a clear water scour condition. The methodology developed for computing the time variation of scour depth is based on the concept of the conservation of the mass of sediment, considering the primary vortex system as the main agent of scouring, and assuming a layer-by-layer scouring process. For an equilibrium scour hole, the characteristic parameters affecting the nondimensional equilibrium scour depth (scour depth/abutment length), identified based on the physical reasoning and dimensional analysis, are excess abutment Froude number, flow depth—abutment length ratio, and abutment length—sediment diameter ratio. Experiments were conducted for time variation and equilibrium scour depths at different sizes of vertical walls, 45° wing walls and semicircular abutments in uniform and nonuniform sediments under limiting clear water scour conditions (approaching flow velocity nearly equal to the critical velocity for bed sediments). The present model corresponds closely with the data of time variation of scour depth in uniform and nonuniform sediments obtained from the present experiments and reported by different investigators.  相似文献   

4.
This technical note presents the results of an experimental study of the erosion of loose cohesionless sand beds by impinging circular water jets with a minimum depth of tailwater. Measurements were made of both the maximum dynamic and static scour depths and the radius of the scour hole. It was found that the dynamic scour depth is about three times that of static scour at the asymptotic state. Dimensional arguments and experimental results are used to show that the main dimensions of the scour hole at the asymptotic state are a function of the densimetric Froude number F0′ = U0′/, where U0′ = velocity of the jet at the original level of the sand bed; g = acceleration due to gravity; D = mean diameter of the sand particles; ρ = density of the eroding fluid; and Δρ = difference between particle and fluid densities. Useful correlations have been developed to estimate the size of the scour holes. Also included is a comparison between the erosion caused by submerged and unsubmerged impinging circular jets.  相似文献   

5.
An experimental study was carried out to understand the local scour process of noncohesive sand beds caused by submerged three-dimensional square jets under model ice covered conditions. The characteristics of asymptotic scour have been investigated by varying the tailwater depth, the densimetric Froude number, the grain size of the bed material, and three different types of water surface conditions (open-water flow, smooth ice covered flow, and rough ice covered flow). Results show that the local scour process under covered conditions is different from that under open water, especially at lower tailwater depths. Further, for the range of test conditions, the effect of the ice cover is reduced when the bed is composed of finer sand particles or when the densimetric Froude number is small.  相似文献   

6.
Clear-Water Scour at Abutments in Thinly Armored Beds   总被引:1,自引:0,他引:1  
Experiments on local scour at short abutments (ratio of abutment length to approaching flow depth less than unity), namely vertical-wall, 45° wing-wall, and semicircular, embedded in a bed of relatively fine noncohesive sediment overlain by a thin armor-layer of coarser sediment, were conducted for different flow conditions, thickness of armor-layers, armor-layer, and bed sediments. The abutments were aligned with the approaching flow in a rectangular channel. The armor-layer and the bed underneath it were composed of different combinations of uniform sediments. In the experiments, the approaching flow velocities were restricted to the clear-water scour condition with respect to the armor-layer particles. Depending on the approaching flow conditions, three cases of scour at abutments in armored beds were identified. Effects of different parameters pertaining to scour at abutments are examined. The comparison of the experimental data shows that the scour depth at an abutment with an armor-layer in clear-water scour condition under limiting stability of the surface particles (approaching flow velocity nearly equaling critical velocity for the threshold motion of surface particles) is always greater than that without armor-layer for the same bed sediments. The characteristic parameters affecting the maximum equilibrium nondimensional scour depth (scour depth-abutment length ratio), identified based on the physical reasoning and dimensional analysis, are excess abutment Froude number, flow depth-abutment length ratio, armor-layer thickness-armor particle diameter ratio, and armor particle-bed sediment diameter ratio. The experimental data of clear-water scour condition in thinly armored beds under limiting stability of surface particles were used to determine the equation of maximum equilibrium scour depth through regression analysis. The estimated scour depths were in agreement with the experimental scour depths. Also, an equation of maximum equilibrium scour depth in uniform sediments was obtained.  相似文献   

7.
Further Results to Time-Dependent Local Scour at Bridge Elements   总被引:2,自引:0,他引:2  
This research intends to clarify the limitations of a local scour equation recently proposed, based on extended laboratory data collected at VAW, Zurich, Switzerland. The present project is concerned with four items: (1) clarification of the minimum laboratory dimensions required to apply Froude similitude; (2) effect of sloping abutments on scour advance; (3) extension of scour formula to spur dikes; and (4) effect of unsteady flow on scour development. These items were investigated mainly from an experimental point of view based on some 150 laboratory experiments and accounted for by a hydraulic approach. It was found that the basic scour equation mentioned may be applied provided additional limitations are specified. These are discussed in the light of the densimetric particle Froude number, the threshold Froude number, and other important parameters that influence the progress of local scour. The results of this study may be applied to practice, provided the limitations of the computational approach are respected.  相似文献   

8.
Plunge pool scour is an important topic in hydraulic structures design. Numerous studies have been done in past years to understand the scour phenomenon due to plunging jets. These studies finally aimed at reducing the risk of structural undermining and collapse. Scour holes created under various hydraulic and geometrical conditions were analyzed for both two-dimensional and three-dimensional cases, and methods to reduce the scour were also investigated. In the current study, an attempt was made to quantify the feasibility of using crossing jets. The scour process was analyzed, and various relationships were presented to predict the main geometrical parameters, i.e., maximum scour hole depth, scour hole length, and scour hole width. Scour profiles were also compared with those due to an equivalent single jet. The main parameters on which the scour geometry depends were found as the densimetric Froude number of the jet, the crossing angle between the jets, the distance between the crossing point and the water surface level, and the water depth. All experiments have been carried out for a fixed vertical angle of 45°.  相似文献   

9.
The results of an experimental investigation on scour of noncohesive sediment beds (uniform and nonuniform sediments) downstream of an apron due to a submerged horizontal jet issuing from a sluice opening are presented. Attempts are made to explain the similarity existing in the scour process and profiles (including dune in the downstream of the scour hole). The scour profiles at different times follow a particular geometrical similarity and can be expressed by the combination of two polynomials. Using experimental scour depth at different times, the time variation of scour depth is scaled by an exponential law, where time scale increases linearly with densimetric Froude number. The equilibrium scour depth, related to the sediment size relative to the sluice opening, decreases with increase in sediment size and sluice opening. On the other hand, the equilibrium scour depth increases with increase in densimetric Froude number. The variation of equilibrium scour depth with tailwater depth indicates a critical tailwater depth corresponding to a minimum equilibrium scour depth. The effect of sediment gradation on scour depth is pronounced for nonuniform sediments, which reduce scour depth significantly due to formation of an armor layer, and therefore prompted study of the reduction of scour depth by a launching apron placed downstream of the rigid apron. The results show that the average reduction of scour depth by placing a launching apron was 39%, having a maximum of 57.3% and a minimum of 16.2%. The characteristic parameters affecting maximum equilibrium scour depth are identified based on the physical reasoning and dimensional analysis. Equation of maximum equilibrium scour depth obtained empirically agrees well with the experimental data.  相似文献   

10.
The upward seepage through the bed sediment downstream of an apron of a sluice gate structure is a common occurrence due to afflux of the flow level between the upstream and downstream reaches of a sluice gate. The result of an experimental investigation on the characteristics of the scour hole and the flow-field downstream of an apron due to submerged jets under the influence of upward seepage through the bed sediment is presented. Experiments were run for the conditions of submerged jets, having submergence factors from 0.99 to 1.72 and jet Froude numbers from 3.15 to 4.87, over beds of sediments (median sizes = 0.8, 1.86, and 3?mm) downstream of an apron under upward seepage velocities. The characteristic lengths of the scour hole determined from the scour profiles are: the maximum equilibrium scour depth, the horizontal distance of the location of maximum scour depth from the edge of the apron, the horizontal extent of the scour hole from the edge of the apron, the dune height, and the horizontal distance of the dune crest from the edge of the apron, all of which were found to increase with an increase in the seepage velocity. Using experimental results, the time variation of the scour depth is scaled by an exponential law, where the nondimensional time scale decreases linearly with an increase in the ratio of the seepage velocity to the issuing jet velocity. The flow field in the submerged jets over both the apron and within the scour hole was detected using an acoustic Doppler velocimeter. The vertical distributions of time-averaged velocities, turbulence intensities and Reynolds stress at different streamwise distances, and the horizontal distribution of bed-shear stress are plotted for the conditions of scour holes with and without upward seepage. Vector plots of the flow field show that the rate of decay of the submerged jet decreases with an increase in the seepage velocity. The flow characteristics in the scour holes are analyzed in the context of the influence of upward seepage velocity on the decay of the velocity and turbulence intensities and the growth of the boundary layer.  相似文献   

11.
Local scour at circular piers founded on clay was studied experimentally in the laboratory to compare the depth of scour in sand and in clay and to investigate the effects of the Reynolds number, Froude number, and approach flow depth on scour depth. The depths of scour in front, at the side, and in the back of the piers were measured as a function of time under steady, gradually varied flow conditions. The measured scour-depth-versus-time curves were fitted with a hyperbola to estimate the equilibrium scour depths. The extrapolated equilibrium scour depths were compared with values predicted by the Federal Highway Administration equation. The results showed that although the rates of scour were much slower in clay than in sand, equilibrium scour in clay was about the same as in sand. It was found that the shape of the scour hole correlates with the pier Reynolds number. At low Reynolds numbers, the depth of scour was about the same all around the piers. At higher Reynolds numbers, the scour holes developed mainly behind the piers with much less scour in front of the piers. It was also found that the extrapolated equilibrium scour depth correlates well with the pier Reynolds number and that the Froude number and relative water depth did not have a significant effect on the scour depth for these experimental conditions.  相似文献   

12.
This paper reports an experimental investigation on the velocity and turbulence characteristics in an evolving scour hole downstream of an apron due to submerged jets issuing from a sluice opening detected by an acoustic Doppler velocimeter. Experiments were carried out for the conditions of submerged jets, having submergence factors from 0.96 to 1.85 and jet Froude numbers from 2.58 to 4.87, over sediment beds downstream of a rigid apron. The distributions of time-averaged velocity vectors, turbulence intensities, and Reynolds stress at different streamwise distances are plotted for the conditions of initial flat bed, intermediate scour holes, and equilibrium scour hole downstream of an apron. Vector plots of the flow field show that the rate of decay of the submerged jet velocity increases with an increase in scour hole dimension. The bed-shear stresses are determined from the Reynolds stress distributions. The flow characteristics in evolving scour holes are analyzed in the context of self-preservation, growth of the length scale, and decay of the velocity and turbulence characteristics scales. The most significant observation is that the flow in the scour holes (intermediate and equilibrium) is found to be plausibly self-preserving.  相似文献   

13.
The study is aimed at investigating the mean flow and turbulence characteristics in scour geometry developed near a circular cylinder of length 10cm placed over the sand bed transverse to the flow. The obstacle placed on a sand bed, on the way of a unidirectional flow, develops a crescent-shaped scour mark on the bed. The scour is caused by generation of vortex developed on the upstream side of the obstacle. Sand grains eroded by this vortex, are deposited on the downstream side of the obstacle as wakes. The turbulent flow field within the scour mark was measured in a laboratory flume using an Acoustic Doppler Velocimeter (ADV). The scour marks named as current crescents preserved in geological record are traditionally used as indicators of palaeocurrent direction. The distribution of mean velocity components, turbulent intensities and Reynolds stresses at different positions of the mark are presented. The experimental evidence also shows that the geometric characteristics of the scour mark (width) depend primarily on the cylinder aspect ratio, cylinder Reynolds number and sediment Froude number.  相似文献   

14.
The main flow features of three-dimensional plunge pool scour are explored in this experimental research for steady flow conditions. These include the maximum depth of the scour hole, its streamwise geometry, and the maximum width, the maximum height of the ridge, its shape in plan view, and its profile. Expressions for all these parameters are presented in terms of the basic scour variables, including the approach flow densimetric Froude number, the jet impact angle, the jet diameter, and the tailwater elevation above the originally horizontal sediment bed. This research is based on a previous work relating to two-dimensional plunge pool scour. Differences between the two phenomena are outlined, and the results are discussed in terms of engineering applications. The results of the two works allow for the prediction of the most salient features of plunge pool scour for both the dynamic and the static scour holes.  相似文献   

15.
The results of an experimental investigation of the time variation of scour hole and the flow characteristics of the quasi-equilibrium state of scour of a cohesive bed downstream of an apron due to a submerged horizontal jet issuing from a sluice opening are presented. Experiments were carried out with natural cohesive sediment for various sluice openings, jet velocities, and lengths of apron. Attempts are made to explain the similarity existing either in the process of scour or in the scour profiles that the scour holes follow downstream of an apron. The scour profiles at different times follow a particular geometrical similarity and can be expressed by a polynomial using relevant parameters. The characteristic parameters affecting the time variation of scour depth are identified based on the physical reasoning and dimensional analysis. An equation for time variation of maximum scour depth is obtained empirically. The diffusion characteristics of the submerged jet, growth of boundary layer thickness, velocity distribution within the boundary layer, and shear stress at the quasi-equilibrium state of scour are also investigated. The expression of shear stress is obtained from the solution of the von Kármán momentum integral equation.  相似文献   

16.
The scour process downstream of block ramps is an important research topic of value to engineering practice. The object of the present experimental study is to examine the scour mechanism in order to predict the main geometrical parameters of the scour hole downstream of block ramps. The investigations have been conducted using two physical models located in the hydraulic laboratory of the Department of Civil Engineering in Pisa, Italy. Sediments with different values of the nonuniformity parameter were used as channel bed material. Moreover, different ramp slopes, ranging from 1/4 to 1/12, were tested. Equations and graphs demonstrate that the results can be interpreted by means of simple relationships in the case in which a ridge is present downstream of the scour hole.  相似文献   

17.
Experimental results on scour below a high vertical drop (drop height/critical depth >1) in uniform sands and gravels are presented. The experimental results are used to describe the effects of important parameters, identified from the dimensional analysis, on equilibrium scour depth. The important observations are that the equilibrium scour depth increases with increase in densimetric Froude number, whereas the scour depth decreases with increase in sediment size and tailwater depth. The time scale of scour depth that follows an exponential law is determined. The nondimensional time scale decreases with increase in densimetric Froude number.  相似文献   

18.
Temporal Variation of Scour Depth at Nonuniform Cylindrical Piers   总被引:3,自引:0,他引:3  
The paper proposes a semiempirical model to estimate the temporal development of scour depth at cylindrical piers with unexposed foundations. A cylindrical pier with a foundation is considered as nonuniform pier. The concept of primary vortex and the principle of volumetric rate of sediment transport are used to develop a methodology to characterize the rate of evolution of the scour hole at nonuniform cylindrical piers. The model also simulates the entire scouring process at nonuniform cylindrical piers having the discontinuous surface located below the initial bed level. The scouring process includes three zones; viz Zone 1 having the scouring phenomenon similar to that of a uniform pier, Zone 2 in which the scour depth remains unchanged with its value equal to the depth of the top level of foundation below the initial bed level while the dimensions of the scour hole increase, and in Zone 3 the geometry pier foundation influences the scouring process. A concept of superposition using an effective pier diameter is proposed to simulate the scouring process in Zone 3. In addition, the laboratory experiments were conducted to utilize the laboratory results for the validation of the model. The simulated results obtained from the proposed model are in good agreement with the present experimental results and also other experimental data. Also, the effect of unsteadiness of flow is incorporated in the model and the results of the model are compared with the experimental data. The model agrees satisfactorily with the experimental data.  相似文献   

19.
Scour control downstream of hydraulic structures is an important topic in hydraulic engineering. Block ramps or rock chutes are often used to control scour downstream of hydraulic structures and have the peculiarity to be ecofriendly. Although these structures assure great energy dissipation, the rapid passage from supercritical to subcritical flow at the toe results in a scour hole with geometric parameters that have to be evaluated in order to avoid foundation problems. For this reason, the analysis of the scour process and the comprehension of the hydrodynamic mechanisms on which it is based are extremely important. In this paper, the results of systematic experimental tests are shown that analyze both the influence of the stilling basin tailwater depth and the ramp toe stabilizing structures, for both uniform and nonuniform channel bed materials. In fact, block ramps are generally stabilized by inserting piles or micropiles at the toe. The upper edge level of piles or micropiles was found a relevant parameter for the scour hole geometry. Simple novel relationships that account for tailwater depth, pile position, and bed material gradation are developed to evaluate the main lengths of the scour hole, in the case in which a free hydraulic jump in a mobile bed occurs. These simple relationships give engineers helpful instruments in block ramp design.  相似文献   

20.
This paper uses results from detached eddy simulation to reveal the dynamics of large-scale coherent eddies in the flow around a circular pier with an equilibrium scour hole. This is important for the sediment transport because the local scour process is controlled to a large extent by the large-scale coherent structures present in the near-bed region. The present paper investigates the dynamics of these coherent structures, their interactions and their role in entraining sediment in the later stages of the scour process when the horseshoe vortex system is stabilized by the presence of a large scour hole. The pier Reynolds number was 2.06×105, outside the range of well-resolved large-eddy simulation (LES). Additionally, scale effects are investigated based on comparison with LES results obtained at a much lower Reynolds number of 16,000 in a previous investigation. The paper provides a detailed study of the dynamics of the main necklace vortices of the horseshoe vortex system, including an investigation of the bimodal oscillations, their effect on the amplification of the turbulence within the scour hole and the interactions of the necklace vortices with the downflow. Several mechanisms for the growth of the downstream part of the scour hole in the later stages of the scour process are discussed. Similar to the low-Reynolds-number simulation, and consistent with experimental observations, the presence of strong upwelling motions near the symmetry plane resulted in the suppression of the large-scale vortex shedding in the wake. The fact that the nondimensional values of the turbulent kinetic energy and pressure RMS fluctuations in the higher Reynolds number simulation were consistently lower inside the regions of high turbulence amplification associated with the main necklace vortex, the separated shear layers and the near-wake shows that changes in the flow and turbulence due to the Reynolds number and scour hole geometry can be quantitatively significant over Reynolds numbers between 104 and 105.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号