首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
The b- and delta-subunits of the Escherichia coli ATP synthase are critical for binding ECF1 to the F0 part, and appear to constitute the stator necessary for holding the alpha3beta3 hexamer as the c-epsilon-gamma domain rotates during catalysis. Previous studies have determined that the b-subunits are dimeric for a large part of their length, and interact with the F1 part through the delta-subunit (Rodgers, A. J. W., Wilkens, S., Aggeler, R., Morris, M. B., Howitt, S. M., and Capaldi, R. A. (1997) J. Biol. Chem. 272, 31058-31064). To further study b-subunit interactions, three mutants were constructed in which Ser-84, Ala-144, and Leu-156, respectively, were replaced by Cys. Treatment of purified ECF1F0 from all three mutants with CuCl2 induced disulfide formation resulting in b-subunit dimer cross-link products. In addition, the mutant bL156C formed a cross-link from a b-subunit to an alpha-subunit via alphaCys90. Neither b-b nor b-alpha cross-linking had significant effect on ATPase activities in any of the mutants. Proton pumping activities were measured in inner membranes from the three mutants. Dimerization of the b-subunit did not effect proton pumping in mutants bS84C or bA144C. In the mutant bL156C, CuCl2 treatment reduced proton pumping markedly, probably because of uncoupling caused by the b-alpha cross-link formation. The results show that the alpha-subunit forms part of the binding site on ECF1 for the b2delta domain and that the b-subunit extends all the way from the membrane to the top of the F1 structure. Some conformational flexibility in the connection between the second stalk and F1 appears to be required for coupled catalysis.  相似文献   

2.
A mutant of the Escherichia coli F1F0-ATPase has been generated (alphaQ2C) in which the glutamine at position 2 of the alpha subunit has been replaced with a cysteine residue. Cu2+ treatment of ECF1 from this mutant cross-linked an alpha subunit to the delta subunit in high yield. Two different sites of disulfide bond formation were involved, i.e. between Cys90 (or the closely spaced Cys47) of alpha with Cys140 of delta, and between Cys2 of alpha and Cys140 of delta. Small amounts of other cross-linked products, including alpha-alpha, delta internal, and alpha-alpha-delta were obtained. In ECF1F0, there was no cross-linking between the intrinsic Cys of alpha and Cys140. Instead, the product generated between Cys2 of alpha and Cys140 of delta was obtained at near 90% yield. Small amounts of alpha-alpha and delta internal were present, and under high Cu2+ concentrations, alpha-alpha-delta was also formed. The ATPase activity of ECF1 and ECF1F0 was not significantly affected by the presence of these cross-links. When Cys140 of delta was first modified with N-ethylmaleimide in ECF1F0, an alpha-delta cross-link was still produced, although in lower yield, between Cys64 of delta and Cys2 of alpha. ATP hydrolysis-linked proton pumping of inner membranes from the mutant alpha2QC was only marginally affected by cross-linking of the alpha to the delta subunit. These results indicate that Cys140 and Cys64 of the delta subunit and Cys2 of the alpha subunit are in close proximity. This places the delta subunit near the top of the alpha-beta hexagon and not in the stalk region. As fixing the delta to the alpha by cross-linking does not greatly impair either the ATPase function of the enzyme, or coupled proton translocation, we argue that the delta subunit forms a portion of the stator linking F1 to F0.  相似文献   

3.
The shape and subunit arrangement of the Escherichia coli F1 ATPase (ECF1 ATPase) was investigated by synchrotron radiation x-ray solution scattering. The radius of gyration and the maximum dimension of the enzyme complex are 4.61 +/- 0.03 nm and 15.5 +/- 0.05 nm, respectively. The shape of the complex was determined ab initio from the scattering data at a resolution of 3 nm, which allowed unequivocal identification of the volume occupied by the alpha3beta3 subassembly and further positioning of the atomic models of the smaller subunits. The delta subunit was positioned near the bottom of the alpha3beta3 hexamer in a location consistent with a beta-delta disulfide formation in the mutant ECF1 ATPase, betaY331W:betaY381C:epsilonS108C, when MgADP is bound to the enzyme. The position and orientation of the epsilon subunit were found by interactively fitting the solution scattering data to maintain connection of the two-helix hairpin with the alpha3beta3 complex and binding of the beta-sandwich domain to the gamma subunit. Nucleotide-dependent changes of the delta subunit were investigated by stopped-flow fluorescence technique at 12 degrees C using N-[4-[7-(dimethylamino)-4-methyl]coumarin-3-yl]maleimide (CM) as a label. Fluorescence quenching monitored after addition of MgATP was rapid [k = 6.6 s-1] and then remained constant. Binding of MgADP and the noncleavable nucleotide analog AMP . PNP caused an initial fluorescent quenching followed by a slower decay back to the original level. This suggests that the delta subunit undergoes conformational changes and/or rearrangements in the ECF1 ATPase during ATP hydrolysis.  相似文献   

4.
Mutants of ECF1-ATPase were generated, containing cysteine residues in one or more of the following positions: alphaSer-411, betaGlu-381, and epsilonSer-108, after which disulfide bridges could be created by CuCl2 induced oxidation in high yield between alpha and epsilon, beta and epsilon, alpha and gamma, beta and gamma (endogenous Cys-87), and alpha and beta. All of these cross-links lead to inhibition of ATP hydrolysis activity. In the two double mutants, containing a cysteine in epsilonSer-108 along with either the DELSEED region of beta (Glu-381) or the homologous region in alpha (Ser-411), there was a clear nucleotide dependence of the cross-link formation with the epsilon subunit. In betaE381C/epsilonS108C the beta-epsilon cross-link was obtained preferentially when Mg2+ and ADP + Pi (addition of MgCl2 + ATP) was present, while the alpha-epsilon cross-link product was strongly favored in the alphaS411C/epsilonS108C mutant in the Mg2+ ATP state (addition of MgCl2 + 5'-adenylyl-beta,gamma-imidodiphosphate). In the triple mutant alphaS411C/betaE381C/epsilonS108C, the epsilon subunit bound to the beta subunit in Mg2+-ADP and to the alpha subunit in Mg2+-ATP, indicating a significant movement of this subunit. The gamma subunit cross-linked to the beta subunit in higher yield in Mg2+-ATP than in Mg2+-ADP, and when possible, i.e. in the triple mutant, always preferred the interaction with the beta over the alpha subunit.  相似文献   

5.
The soluble portion of the Escherichia coli F1F0 ATP synthase (ECF1) and E. coli F1F0 ATP synthase (ECF1F0) have been isolated from a novel mutant gammaY205C. ECF1 isolated from this mutant had an ATPase activity 3.5-fold higher than that of wild-type enzyme and could be activated further by maleimide modification of the introduced cysteine. This effect was not seen in ECF1F0. The mutation partly disrupts the F1 to F0 interaction, as indicated by a reduced efficiency of proton pumping. ECF1 containing the mutation gammaY205C was bound to the membrane-bound portion of the E. coli F1F0 ATP synthase (ECF0) isolated from mutants cA39C, cQ42C, cP43C, and cD44C to reconstitute hybrid enzymes. Cu2+ treatment or reaction with 5,5'-dithio-bis(2-nitro-benzoic acid) induced disulfide bond formation between the Cys at gamma position 205 and a Cys residue at positions 42, 43, or 44 in the c subunit but not at position 39. Using Cu2+ treatment, this covalent cross-linking was obtained in yields as high as 95% in the hybrid ECF1 gammaY205C/cQ42C and in ECF1F0 isolated from the double mutant of the same composition. The covalent linkage of the gamma to a c subunit had little effect on ATPase activity. However, ATP hydrolysis-linked proton translocation was lost, by modification of both gamma Cys-205 and c Cys-42 by bulky reagents such as 5,5'-dithio-bis (2-nitro-benzoic acid) or benzophenone-4-maleimide. In both ECF1 and ECF1F0 containing a Cys at gamma 205 and a Cys in the epsilon subunit (at position 38 or 43), cross-linking of the gamma to the epsilon subunit was induced in high yield by Cu2+. No cross-linking was observed in hybrid enzymes in which the Cys was at position 10, 65, or 108 of the epsilon subunit. Cross-linking of gamma to epsilon had only a minimal effect on ATP hydrolysis. The reactivity of the Cys at gamma 205 showed a nucleotide dependence of reactivity to maleimides in both ECF1 and ECF1F0, which was lost in ECF1 when the epsilon subunit was removed. Our results show that there is close interaction of the gamma and epsilon subunits for the full-length of the stalk region in ECF1F0. We argue that this interaction controls the coupling between nucleotide binding sites and the proton channel in ECF1F0.  相似文献   

6.
7.
Interactions of the F1F0-ATPase subunits between the cytoplasmic domain of the b subunit (residues 26-156, bcyt) and other membrane peripheral subunits including alpha, beta, gamma, delta, epsilon, and putative cytoplasmic domains of the a subunit were analyzed with the yeast two-hybrid system and in vitro reconstitution of ATPase from the purified subunits as well. Only the combination of bcyt fused to the activation domain of the yeast GAL-4, and delta subunit fused to the DNA binding domain resulted in the strong expression of the beta-galactosidase reporter gene, suggesting a specific interaction of these subunits. Expression of bcyt fused to glutathione S-transferase (GST) together with the delta subunit in Escherichia coli resulted in the overproduction of these subunits in soluble form, whereas expression of the GST-bcyt fusion alone had no such effect, indicating that GST-bcyt was protected by the co-expressed delta subunit from proteolytic attack in the cell. These results indicated that the membrane peripheral domain of b subunit stably interacted with the delta subunit in the cell. The affinity purified GST-bcyt did not contain significant amounts of delta, suggesting that the interaction of these subunits was relatively weak. Binding of these subunits observed in a direct binding assay significantly supported the capability of binding of the subunits. The ATPase activity was reconstituted from the purified bcyt together with alpha, beta, gamma, delta, and epsilon, or with the same combination except epsilon. Specific elution of the ATPase activity from glutathione affinity column with the addition of glutathione after reconstitution demonstrated that the reconstituted ATPase formed a complex. The result indicated that interaction of b and delta was stabilized by F1 subunits other than epsilon and also suggested that b-delta interaction was important for F1-F0 interaction.  相似文献   

8.
The proton-translocating F1F0 ATP synthase from Clostridium thermoautotrophicum was solubilized from cholate-washed membranes with Zwittergent 3-14 at 58 degrees C and purified in the presence of octylglucoside by sucrose gradient centrifugation and ion-exchange chromatography on a DEAE-5PW column. The purified enzyme hydrolyzed ATP at a rate of 12.6 micromol min(-1) mg(-1) at 58 degrees C and pH 8.5. It was composed of six different polypeptides with molecular masses of 60, 50, 32, 19, 17, and 8 kDa. These were identified as alpha, beta, gamma, delta, epsilon, and c subunits, respectively, as their N-terminal amino acid sequences matched the deduced N-terminal amino acid sequences of the corresponding genes of the atp operon sequenced from Clostridium thermoaceticum (GenBank accession no. U64318), demonstrating the close similarity of the F1F0 complexes from C. thermoaceticum and C. thermoautotrophicum. Four of these subunits, alpha, beta, gamma, and epsilon, constituted the F1-ATPase purified from the latter bacterium. The delta subunit could not be found in the purified F1 although it was present in the F1F0 complex, indicating that the F0 moiety consisted of the delta and the c subunits and lacked the a and b subunits found in many aerobic bacteria. The c subunit was characterized as N,N'-dicyclohexylcarbodiimide reactive. The F1F0 complex of C. thermoautotrophicum consisting of subunits alpha, beta, gamma, delta, epsilon, and c was reconstituted with phospholipids into proteoliposomes which had ATP-Pi exchange, carbonylcyanide p-trifluoromethoxy-phenylhydrazone-stimulated ATPase, and ATP-dependent proton-pumping activities. Immunoblot analyses of the subunits of ATP synthases from C. thermoautotrophicum, C. thermoaceticum, and Escherichia coli revealed antigenic similarities among the F1 subunits from both clostridia and the beta subunit of F1 from E. coli.  相似文献   

9.
The DNA sequence analysis of the F0F1-ATPase operon of the bacterium Mycoplasma pneumoniae predicted that the subunit b, encoded by the gene atpF, is a lipoprotein of the murein lipoprotein type of Escherichia coli. Here we experimentally verify this prediction by metabolic labeling of subunit b with [14C]palmitic acid and by in vivo interfering with the processing of the prolipoprotein form of subunit b by the antibiotic globomycin, a specific inhibitor of the signal peptidase II. Our results suggest that the subunit b of the F0F1-ATPase of M. pneumoniae is anchored at the cytoplasmic membrane by an N-terminal lipid modification in addition to its transmembrane domain. The lipoprotein nature of subunit b and its proposed membrane topology seems to be characteristic for mycoplasmas, since among all sequenced bacterial atpF genes, only those from Mycoplasma gallisepticum and Mycoplasma genitalium code for a conserved lipoprotein consensus sequence.  相似文献   

10.
Rotation of the epsilon subunit in F1-ATPase from thermophilic Bacillus strain PS3 (TF1) was observed under a fluorescence microscope by the method used for observation of the gamma subunit rotation (Noji, H., Yasuda, R., Yoshida, M., and Kinosita, K., Jr. (1997) Nature 386, 299-302). The alpha3 beta3 gamma epsilon complex of TF1 was fixed to a solid surface, and fluorescently labeled actin filament was attached to the epsilon subunit through biotin-streptavidin. In the presence of ATP, the filament attached to epsilon subunit rotated in a unidirection. The direction of the rotation was the same as that observed for the gamma subunit. The rotational velocity was slightly slower than the filament attached to the gamma subunit, probably due to the experimental setup used. Thus, as suggested from biochemical studies (Aggeler, R., Ogilvie, I. , and Capaldi, R. A. (1997) J. Biol. Chem. 272, 19621-19624), the epsilon subunit rotates with the gamma subunit in F1-ATPase during catalysis.  相似文献   

11.
Subunits a and c of Fo are thought to cooperatively catalyze proton translocation during ATP synthesis by the Escherichia coli F1Fo ATP synthase. Optimizing mutations in subunit a at residues A217, I221, and L224 improves the partial function of the cA24D/cD61G double mutant and, on this basis, these three residues were proposed to lie on one face of a transmembrane helix of subunit a, which then interacted with the transmembrane helix of subunit c anchoring the essential aspartyl group. To test this model, in the present work Cys residues were introduced into the second transmembrane helix of subunit c and the predicted fourth transmembrane helix of subunit a. After treating the membrane vesicles of these mutants with Cu(1, 10-phenanthroline)2SO4 at 0 degrees, 10 degrees, or 20 degreesC, strong a-c dimer formation was observed at all three temperatures in membranes of 7 of the 65 double mutants constructed, i.e., in the aS207C/cI55C, aN214C/cA62C, aN214C/cM65C, aI221C/cG69C, aI223C/cL72C, aL224C/cY73C, and aI225C/cY73C double mutant proteins. The pattern of cross-linking aligns the helices in a parallel fashion over a span of 19 residues with the aN214C residue lying close to the cA62C and cM65C residues in the middle of the membrane. Lesser a-c dimer formation was observed in nine other double mutants after treatment at 20 degreesC in a pattern generally supporting that indicated by the seven landmark residues cited above. Cross-link formation was not observed between helix-1 of subunit c and helix-4 of subunit a in 19 additional combinations of doubly Cys-substituted proteins. These results provide direct chemical evidence that helix-2 of subunit c and helix-4 of subunit a pack close enough to each other in the membrane to interact during function. The proximity of helices supports the possibility of an interaction between Arg210 in helix-4 of subunit a and Asp61 in helix-2 of subunit c during proton translocation, as has been suggested previously.  相似文献   

12.
The membrane topology of the a subunit of the F1F0 ATP synthase from Escherichia coli has been probed by surface labeling using 3-(N-maleimidylpropionyl) biocytin. Subunit a has no naturally occurring cysteine residues, allowing unique cysteines to be introduced at the following positions: 8, 24, 27, 69, 89, 128, 131, 172, 176, 196, 238, 241, and 277 (following the COOH-terminal 271 and a hexahistidine tag). None of the single mutations affected the function of the enzyme, as judged by growth on succinate minimal medium. Membrane vesicles with an exposed cytoplasmic surface were prepared using a French pressure cell. Before labeling, the membranes were incubated with or without a highly charged sulfhydryl reagent, 4-acetamido-4'-maleimidylstilbene-2,2'-disulfonic acid. After labeling with the less polar biotin maleimide, the samples were solubilized with octyl glucoside/cholate and the subunit a was purified via the oligohistidine at its COOH terminus using immobilized nickel chromatography. The purified samples were electrophoresed and transferred to nitrocellulose for detection by avidin conjugated to alkaline phosphatase. Results indicated cytoplasmic accessibility for residues 69, 172, 176, and 277 and periplasmic accessibility for residues 8, 24, 27, and 131. On the basis of these and earlier results, a transmembrane topology for the subunit a is proposed.  相似文献   

13.
Ser --> Cys mutations were introduced into subunit delta of spinach chloroplast F0F1-ATPase (CF0CF1) by site-directed mutagenesis. The engineered delta subunits were overexpressed in Escherichia coli, purified, and reassembled with spinach chloroplast F1-ATPase (CF1) lacking the delta subunit (CF1(-delta)). By modification with eosin-5-maleimide, it was shown that residues 10, 57, 82, 160, and 166 were solvent-accessible in isolated CF1 and all but residue 166 also in membrane-bound CF0CF1. Modification of the engineered delta subunit with photolabile cross-linkers, binding of delta to CF1(-delta), and photolysis yielded the same SDS gel pattern of cross-link products in the presence or absence of ADP, phosphate, and ATP and both in soluble CF1 and in CF0CF1. By chemical hydrolysis of cross-linked CF1, it was shown that deltaS10C was cross-linked within the N-terminal 62 residues of subunit beta. deltaS57C, deltaS82C, and deltaS166C were cross-linked within the N-terminal 192 residues of subunit alpha. Cross-linking affected neither ATP hydrolysis by soluble CF1 nor its ability to reassemble with CF0 and to structurally reconstitute ATP synthesis. Functional reconstitution, however, seemed to be impaired.  相似文献   

14.
Voltage-gated calcium channels are composed of a main pore-forming alpha1 moiety, and one or more auxiliary subunits (beta, alpha2 delta) that modulate channel properties. Because modulatory properties may vary greatly with different channels, expression systems, and protocols, it is advantageous to study subunit regulation with a uniform experimental strategy. Here, in HEK 293 cells, we examine the expression and activation gating of alpha1E calcium channels in combination with a beta (beta1-beta4) and/or the alpha2 delta subunit, exploiting both ionic- and gating-current measurements. Furthermore, to explore whether more than one auxiliary subunit can concomitantly specify gating properties, we investigate the effects of cotransfecting alpha2delta with beta subunits, of transfecting two different beta subunits simultaneously, and of COOH-terminal truncation of alpha1E to remove a second beta binding site. The main results are as follows. (a) The alpha2delta and beta subunits modulate alpha1E in fundamentally different ways. The sole effect of alpha2 delta is to increase current density by elevating channel density. By contrast, though beta subunits also increase functional channel number, they also enhance maximum open probability (Gmax/Qmax) and hyperpolarize the voltage dependence of ionic-current activation and gating-charge movement, all without discernible effect on activation kinetics. Different beta isoforms produce nearly indistinguishable effects on activation. However, beta subunits produced clear, isoform-specific effects on inactivation properties. (b) All the beta subunit effects can be explained by a gating model in which subunits act only on weakly voltage-dependent steps near the open state. (c) We find no clear evidence for simultaneous modulation by two different beta subunits. (d) The modulatory features found here for alpha1E do not generalize uniformly to other alpha1 channel types, as alpha1C activation gating shows marked beta isoform dependence that is absent for alpha1E. Together, these results help to establish a more comprehensive picture of auxiliary-subunit regulation of alpha1E calcium channels.  相似文献   

15.
The anti-epileptic, anti-hyperalgesic, and anxiolytic agent gabapentin (1-(aminomethyl)-cyclohexane acetic acid or Neurontin) has previously been shown to bind with high affinity to the alpha2delta subunit of voltage-dependent calcium channels (Gee, N. S. , Brown, J. P., Dissanayake, V. U. K., Offord, J., Thurlow, R., and Woodruff, G.N. (1996) J. Biol. Chem. 271, 5768-5776). We report here the cloning, sequencing, and deletion mutagenesis of the alpha2delta subunit from porcine brain. The deduced protein sequence has a 95.9 and 98.2% identity to the rat and human neuronal alpha2 delta sequences, respectively. [3H]Gabapentin binds with a KD of 37.5 +/- 10.4 nM to membranes prepared from COS-7 cells transfected with wild-type porcine alpha2 delta cDNA. Six deletion mutants (B-G) that lack the delta polypeptide, together with varying amounts of the alpha2 component, failed to bind [3H]gabapentin. C-terminal deletion mutagenesis of the delta polypeptide identified a segment (residues 960-994) required for correct assembly of the [3H]gabapentin binding pocket. Mutant L, which lacks the putative membrane anchor in the delta sequence, was found in both membrane-associated and soluble secreted forms. The soluble form was not proteolytically cleaved into separate alpha2 and delta chains but still retained a high affinity (KD = 30.7 +/- 8.1 nM) for [3H]gabapentin. The production of a soluble alpha2delta mutant supports the single transmembrane model of the alpha2 delta subunit and is an important step toward the large-scale recombinant expression of the protein.  相似文献   

16.
The catalytic portion of the chloroplast ATP synthase (CF1) is structurally asymmetric. Asymmetry of the otherwise symmetrical alpha3beta3 heterohexamer is induced by the presence of tightly bound nucleotides and interactions with the single-copy, smaller subunits. Lucifer Yellow vinyl sulfone (4-amino-N-[3-(vinylsulfonyl)phenyl]naphthalimide-3,6-disulfonic acid) rapidly and covalently binds to lysine 378 on one alpha subunit [Nalin, C. M., Snyder, B., and McCarty, R. E., (1985) Biochemistry 24, 2318-2324] [Shapiro, A. B. (1991) Ph.D. Thesis, Cornell University, Ithaca, NY). The asymmetrical binding of Lucifer Yellow to CF1 provides a method to investigate the cause of asymmetry in the alpha subunits. The reaction of CF1 with Lucifer Yellow was monitored by total fluorescence of bound Lucifer Yellow as well as by quantitative determination of Lucifer Yellow bound to the tryptic peptide that contains lysine 378 of the alpha subunit. The total binding of Lucifer Yellow to CF1 was not affected by the presence of tightly bound nucleotides or nucleotide in the medium. Neither the total binding of Lucifer Yellow to CF1 nor the reaction of alpha-lysine 378 with Lucifer Yellow was changed by the removal of the epsilon subunit, the delta subunit, or both subunits. The extent of incorporation of Lucifer Yellow into lysine 378 of the alpha subunit in (alphabeta)n was about three times that of Lucifer Yellow incorporation into CF1. Reconstitution of (alphabeta)n with gamma restored the binding of one Lucifer Yellow per alpha3beta3gamma. Therefore, the interactions between gamma and the alphabeta heterohexamer are important in conferring asymmetry to the alpha subunits of CF1.  相似文献   

17.
Cerebellar granule cells express six GABAA receptor subunits abundantly (alpha1, alpha6, beta2, beta3, gamma2, and delta) and assemble various pentameric receptor subtypes with unknown subunit compositions; however, the rules guiding receptor subunit assembly are unclear. Here, removal of intact alpha6 protein from cerebellar granule cells allowed perturbations in other subunit levels to be studied. Exon 8 of the mouse alpha6 subunit gene was disrupted by homologous recombination. In alpha6 -/- granule cells, the delta subunit was selectively degraded as seen by immunoprecipitation, immunocytochemistry, and immunoblot analysis with delta subunit-specific antibodies. The delta subunit mRNA was present at wild-type levels in the mutant granule cells, indicating a post-translational loss of the delta subunit. These results provide genetic evidence for a specific association between the alpha6 and delta subunits. Because in alpha6 -/- neurons the remaining alpha1, beta2/3, and gamma2 subunits cannot rescue the delta subunit, certain potential subunit combinations may not be found in wild-type cells.  相似文献   

18.
Although the G protein betagamma dimer is an important mediator in cell signaling, the mechanisms regulating its activity have not been widely investigated. The gamma12 subunit is a known substrate for protein kinase C, suggesting phosphorylation as a potential regulatory mechanism. Therefore, recombinant beta1 gamma12 dimers were overexpressed using the baculovirus/Sf9 insect cell system, purified, and phosphorylated stoichiometrically with protein kinase C alpha. Their ability to support coupling of the Gi1 alpha subunit to the A1 adenosine receptor and to activate type II adenylyl cyclase or phospholipase C-beta was examined. Phosphorylation of the beta1 gamma12 dimer increased its potency in the receptor coupling assay from 6.4 to 1 nM, changed the Kact for stimulation of type II adenylyl cyclase from 14 to 37 nM, and decreased its maximal efficacy by 50%. In contrast, phosphorylation of the dimer had no effect on its ability to activate phospholipase C-beta. The native beta1gamma10 dimer, which has 4 similar amino acids in the phosphorylation site at the N terminus, was not phosphorylated by protein kinase C alpha. Creation of a phosphorylation site in the N terminus of the protein (Gly4 --> Lys) resulted in a beta1 gamma10G4K dimer which could be phosphorylated. The activities of this beta gamma dimer were similar to those of the phosphorylated beta1 gamma12 dimer. Thus, phosphorylation of the beta1 gamma12 dimer on the gamma subunit with protein kinase C alpha regulates its activity in an effector-specific fashion. Because the gamma12 subunit is widely expressed, phosphorylation may be an important mechanism for integration of the multiple signals generated by receptor activation.  相似文献   

19.
The two binding sites in the pentameric nicotinic acetylcholine receptor of subunit composition alpha2 beta gamma delta are formed by nonequivalent alpha-gamma and alpha-delta subunit interfaces, which produce site selectivity in the binding of agonists and antagonists. We show by sedimentation analysis that 125I-alpha-conotoxin M1 binds with high affinity to the alpha-delta subunit dimers, but not to alpha-gamma dimers, nor to alpha, gamma, and delta monomers, a finding consistent with alpha-conotoxin M1 selectivity for the alpha delta interface in the intact receptor measured by competition against alpha-bungarotoxin binding. We also extend previous identification of alpha-conotoxin M1 determinants in the gamma and delta subunits to the alpha subunit interface by mutagenesis of conserved residues in the alpha subunit. Most mutations of the alpha subunit affect affinity similarly at the two sites, but Tyr93Phe, Val188Lys, Tyr190Thr, Tyr198Thr, and Asp152Asn affect affinity in a site-selective manner. Mutant cycle analysis reveals only weak or no interactions between mutant alpha and non-alpha subunits, indicating that side chains of the alpha subunit do not interact with those of the gamma or delta subunits in stabilizing alpha-conotoxin M1. The overall findings suggest different binding configurations of alpha-conotoxin M1 at the alpha-delta and alpha-gamma binding interfaces.  相似文献   

20.
An affinity resin for the F1 sector of the Escherichia coli ATP synthase was prepared by coupling the b subunit to a solid support through a unique cysteine residue in the N-terminal leader. b24-156, a form of b lacking the N-terminal transmembrane domain, was able to compete with the affinity resin for binding of F1. Truncated forms of b24-156, in which one or four residues from the C terminus were removed, competed poorly for F1 binding, suggesting that these residues play an important role in b-F1 interactions. Sedimentation velocity analytical ultracentrifugation revealed that removal of these C-terminal residues from b24-156 resulted in a disruption of its association with the purified delta subunit of the enzyme. To determine whether these residues interact directly with delta, cysteine residues were introduced at various C-terminal positions of b and modified with the heterobifunctional cross-linker benzophenone-4-maleimide. Cross-links between b and delta were obtained when the reagent was incorporated at positions 155 and 158 (two residues beyond the normal C terminus) in both the reconstituted b24-156-F1 complex and the membrane-bound F1F0 complex. CNBr digestion followed by peptide sequencing showed the site of cross-linking within the 177-residue delta subunit to be C-terminal to residue 148, possibly at Met-158. These results indicate that the b and delta subunits interact via their C-terminal regions and that this interaction is instrumental in the binding of the F1 sector to the b subunit of F0.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号