首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It has been suggested that inhibitors of nitric oxide synthesis are of value in the treatment of hypotension during sepsis. In this pilot study, we examined the effects of inhibition of nitric oxide synthesis by continuous infusion of N(omega)-nitro-L-arginine methyl ester (L-NAME) at 1.5 mg/kg/h in a patient with severe septic shock. L-NAME produced a rise in mean arterial blood pressure and systemic vascular resistance; catecholamine infusion could be reduced. Parallel to these findings, there was a 50% reduction in cardiac output and a 5-fold rise in pulmonary vascular resistance, which resulted in severe pulmonary hypertension after 3 h of L-NAME infusion, for which the infusion had to be stopped. Following the termination of L-NAME infusion, pulmonary artery pressure and blood pressure returned to baseline values, although pulmonary and systemic vascular resistance remained elevated for several hours. We conclude that nitric oxide appears to play a role in the cardiovascular derangements during human sepsis. Inhibition of nitric oxide synthesis with L-NAME can increase blood pressure and systemic vascular resistance. However, reduced cardiac output and pulmonary hypertension are possible side effects of continuous NO synthase inhibition. These side effects necessitate careful monitoring and may hinder the clinical application of NO synthase inhibitors.  相似文献   

2.
OBJECTIVE: To evaluate the pulmonary effect of treatment with N-nitro-L-arginine methyl ester (NAME) with and without inhaled nitric oxide (NO) in a swine model of endotoxemia. DESIGN: Randomized controlled trial. SETTING: Laboratory. INTERVENTIONS: Following a 20-minute intravenous infusion of Escherichia coli lipopolysaccharide (LPS) (200 micrograms/kg), animals were resuscitated with saline solution (1 mL/kg per minute) and observed for 3 hours while mechanically ventilated (fraction of inspired oxygen [FIO2], 0.6; tidal volume, 12 mL/kg; positive end-expiratory pressure, 5 cm H2O). Group 1 (LPS, n = 6) received no additional treatment; group 2 (NAME, n = 5) received NAME (3 mg/kg per hour) for the last 2 hours; group 3 (NO, n = 6) received NAME (3 mg/kg per hour) and inhaled NO (40 ppm) for the last 2 hours; and group 4 (control, n = 5) received only saline solution without LPS. MAIN OUTCOME MEASURES: Cardiopulmonary variables and blood gases were measured serially. The multiple inert gas elimination technique was performed at 3 hours. The wet-to-dry lung weight ratio was measured following necropsy. RESULTS: Administration of LPS resulted in pulmonary arterial hypertension, pulmonary edema, and hypoxemia with increased ventilation perfusion ratio mismatching. None of these changes were attenuated by NAME treatment alone but all were significantly improved by the simultaneous administration of inhaled NO. CONCLUSIONS: Systemic NO synthase inhibition failed to restore hypoxic pulmonary vasoconstriction following LPS administration. The deleterious effects of endotoxemia on pulmonary function can be improved by inhaled NO but not by systemic inhibition of NO synthase.  相似文献   

3.
OBJECTIVES: Hypoxic pulmonary vasoconstriction, a protective mechanism, minimizes perfusion of underventilated lung areas to reduce ventilation-perfusion mismatching. We studied the effects of sepsis on hypoxic pulmonary vasoconstriction and attempted to determine whether hypoxic pulmonary vasoconstriction is influenced by pyridoxalated hemoglobin polyoxyethylene conjugate, a nitric oxide scavenger. DESIGN: Prospective, randomized, controlled experimental study with repeated measures. SETTING: Investigational intensive care unit at a university medical center. SUBJECTS: Nineteen female merino sheep, divided into three groups: group 1, controls (n = 5); group 2, sheep with sepsis (n = 6); and group 3, septic sheep treated with pyridoxalated hemoglobin polyoxyethylene conjugate (n = 8). INTERVENTIONS: All sheep were instrumented for chronic study. An ultrasonic flow probe was placed around the left pulmonary artery. After a 5-day recovery, a tracheostomy was performed and a double-lumen endotracheal tube was placed. Animals in groups 2 and 3 received a 48-hr infusion of live Pseudomonas aeruginosa (6 x 10(4) colony-forming units/kg/hr). After 24 hrs, sheep in group 3 received pyridoxalated hemoglobin polyoxyethylene conjugate (20 mg/kg/hr) for 16 hrs; sheep in groups 1 and 2 received only the vehicle. Hypoxic pulmonary vasoconstriction was repeatedly tested by unilateral hypoxia of the left lung with 100% nitrogen. Hypoxic pulmonary vasoconstriction was assessed as the change in left pulmonary blood flow. MEASUREMENTS AND MAIN RESULTS: In the animals in group 1, left pulmonary blood flow decreased by 62 +/- 8 (SEM)% during left lung hypoxia and remained stable during repeated hypoxic challenges throughout the study period. After 24 hrs of sepsis, left pulmonary blood flow decreased from 56 +/- 10% to 26 +/- 2% (group 2) and from 50 +/- 8% to 23 +/- 6% (group 3). In the sheep in group 2, there was no adaptation over time. Pulmonary shunt fraction increased. Pyridoxalated hemoglobin polyoxyethylene conjugate had no effect on hypoxic pulmonary vasoconstriction or pulmonary shunt. The animals receiving the bacterial infusion developed a hyperdynamic circulatory state with hypotension, decreased systemic vascular resistance, and increased cardiac output. Pyridoxalated hemoglobin polyoxyethylene conjugate increased mean arterial pressure and systemic vascular resistance but did not influence cardiac index. Pulmonary arterial pressure was increased during sepsis and increased even further after pyridoxalated hemoglobin polyoxyethylene conjugate administration. Oxygenation and oxygen delivery and uptake were not affected by pyridoxalated hemoglobin polyoxyethylene conjugate. CONCLUSIONS: Hypoxic pulmonary vasoconstriction is blunted during sepsis and there is no adaptation over time. It is not influenced by pyridoxalated hemoglobin polyoxyethylene conjugate. Pyridoxalated hemoglobin polyoxyethylene conjugate reversed hypotension and, with the exception of an increase in pulmonary arterial pressure, had no adverse effects on hemodynamics or oxygenation.  相似文献   

4.
Paw edema was induced in male Wistar rats (200-250 g) by intraplantar (ipl) administration of 2.5 micrograms endotoxin (Etx). Etx, like carrageenin, produced two distinct edema formation phases, an early phase (75 min) followed by a late phase (7 h). We showed that the edema formation in the early phase was antagonized by dipyrone (80 mg/kg, i.p.) and indomethacin (1 mg/kg, i.p.) by 52% and 55%, respectively, and that the late phase was resistant to these drugs. These results suggest that in the early phase prostaglandins appear to be involved in the process. However, the activation of the kinin cascade leading to the release of other mediators may be involved in the increase of edema in the late phase. To test this hypothesis, we investigated whether the release of nitric oxide (NO) is involved in the mechanism of endotoxin-induced rat paw edema during the late phase, using N omega-nitro-L-arginine methyl ester (L-NAME) (50 micrograms, ipl) as inhibitor of NO synthase and L-arginine (1 mg, ipl) as substrate of NO synthase. The paw edema induced by Etx was inhibited by L-NAME by 56% and increased by L-arginine by 81%. Furthermore, L-arginine given in combination with L-NAME completely reversed the inhibition of Etx-induced edema produced by L-NAME. These results support the hypothesis that in the late phase NO production is associated with the edema evoked by Etx.  相似文献   

5.
Isolated third-order pulmonary arteries and veins from sheep were examined for the effects of septicemia on norepinephrine-induced contractions, nitric oxide (NO)-mediated dilation, and basal cyclic GMP levels. The groups studied were as follows: control sheep (n = 7); sheep given live Pseudomonas aeruginosa (Ps, n = 6) for 48 h; and sheep given NG-mono-methyl-L-arginine during the last 24 h of Ps infusion (Ps-L-NMMA, n = 4). The norepinephrine-induced contractions were significantly greater (p < .05) in arteries from septic (Ps and Ps-L-NMMA) sheep. Basal cyclic GMP levels were similar in all of the arteries. The norepinephrine-induced contractions were significantly depressed (p < .05) in veins from septic (Ps and Ps-L-NMMA) sheep. Basal cyclic GMP levels in veins from Ps sheep were markedly elevated (p < .01). N omega-nitro-L-arginine methyl ester (L-NAME) ex vivo decreased cyclic GMP in both arteries and veins. Removal of endothelium enhanced contractions and decreased cyclic GMP in arteries and veins only from control sheep. The results show that septicemia differently affects the pulmonary artery and vein. The enhanced vasoconstriction of the artery is due to decreased endothelium-dependent NO release; the attenuated vasoconstriction of the vein is associated with NO-mediated increased cyclic GMP levels.  相似文献   

6.
BACKGROUND: The role of endogenous nitric oxide (NO) in the regulation of pulmonary vascular tone is complex. Inhibition of endogenous NO synthase, potentially through upregulation of guanylyl cyclase, results in an increase in potency of nitrovasodilators in the systemic circulation. This study considered whether inhibition of endogenous NO synthase would increase the potency of nitrovasodilators, but not of cyclic adenosine monophosphate-dependent vasodilators, in the pulmonary vasculature. METHODS: We used the isolated buffer-perfused rabbit lung. Preparations were randomized to receive either pretreatment with NG-nitro-L-arginine methyl ester (or L-NAME, an inhibitor of endogenous NO synthase) or no pretreatment. Stable pulmonary hypertension was then produced by infusing the thromboxane A2 analog U46619. The dose-response characteristics of two nitrovasodilators, sodium nitroprusside and nitroglycerin, and two nonnitrovasodilators, prostaglandin E2 and 5'-N-ethylcarboxamidoadenosine, were studied. RESULTS: Inhibition of endogenous NO synthase caused no significant changes in baseline pulmonary artery pressure but did significantly reduce the U46619 infusion rate required to produce pulmonary hypertension. Pretreatment with L-NAME (vs. no L-NAME) resulted in significantly lower values of the log median effective dose with sodium nitroprusside and nitroglycerin. In contrast, pretreatment with L-NAME resulted in no changes in the dose-response characteristics of the cyclic adenosine monophosphate-mediated, NO-independent vasodilators prostaglandin E1 and 5'-N-ethylcarboxamidoadenosine. CONCLUSIONS: These data suggest that endogenous NO synthase is not an important regulator of basal pulmonary tone in this model but is an important modulator of pulmonary vascular responses to vasoconstriction and to nitrovasodilators. The pulmonary vasodilator effects of nitrovasodilators, but not of nonnitrovasodilators, may depend on the level of activity of NO synthase.  相似文献   

7.
Patients with clinically stable asthma may show ventilation-perfusion (V'A/Q') mismatch. Nitric oxide (NO), a potent endogenous vasodilator, is increased in exhaled air of asthmatics. Such an increased NO production may be detrimental for optimal V'A/Q' balance owing to the potential inhibition of hypoxic pulmonary vasoconstriction. This study was undertaken to investigate the relationship between the concentration of NO in exhaled air and the degree of gas-exchange impairment and to assess the effect of nebulized N(G)-nitro-L-arginine methyl ester (L-NAME), a competitive inhibitor of NO synthesis, on gas exchange in patients with asthma. Twelve patients (four females and eight males, aged 31+/-5 yrs) with clinically stable asthma (forced expiratory volume in one second (FEV1) 80+/-5%) not treated with glucocorticoids and increased exhaled NO (58+/-9 parts per billion (ppb)) were studied. Exhaled NO, respiratory system resistance (Rrs), arterial blood gases and V'A/Q' distributions were measured before and 30, 60, 90 and 120 min after placebo or L-NAME (10(-1) M) nebulization; in eight patients pulmonary haemodynamics were also measured. At baseline no relationships between exhaled NO and gas-exchange measurements were shown. Nebulized L-NAME induced a significant decrease in exhaled NO (p< 0.001), which was maximal at 90 min (-55+/-5%). However, after L-NAME no changes in Rrs, arterial oxygen tension, the alveolar-arterial pressure difference in oxygen or V'A/Q' distributions were shown and nebulized L-NAME did not modify pulmonary artery pressure. In conclusion, the degree of gas-exchange impairment in stable asthma is not related to nitric oxide concentration in exhaled air and nitric oxide synthesis inhibition with N(G)-nitro-L-arginine methyl ester does not alter gas exchange or pulmonary haemodynamics, such that ventilation-perfusion disturbances do not appear to be related to an increased synthesis of nitric oxide in the airways.  相似文献   

8.
BACKGROUND: We describe the hemodynamic response to initiation and withdrawal of inhaled nitric oxide (NO) in infants with pulmonary hypertension after surgical repair of total anomalous pulmonary venous connection. METHODS: Between January 1, 1992, and January 1, 1995, 20 patients underwent repair of total anomalous pulmonary venous connection. Nine patients had postoperative pulmonary hypertension and received a 15-minute trial of inhaled NO at 80 parts per million. Five of these patients received prolonged treatment with NO at 20 parts per million or less. RESULTS: Mean pulmonary artery pressure decreased from 35.6 +/- 2.4 to 23.7 +/- 2.0 mm Hg (mean +/- standard error of the mean) (p = 0.008), and pulmonary vascular resistance decreased from 11.5 +/- 2.0 to 6.4 +/- 1.0 U.m2 (p = 0.03). After prolonged treatment with NO, pulmonary artery pressure increased transiently in all patients when NO was discontinued. CONCLUSIONS: After operative repair of total anomalous pulmonary venous connection, inhaled NO selectively vasodilated all patients with pulmonary hypertension. Withdrawal of NO after prolonged inhalation was associated with transient rebound pulmonary hypertension that dissipated within 60 minutes. Appreciation of rebound pulmonary hypertension may have important implications for patients with pulmonary hypertensive disorders when interruption of NO inhalation is necessary or when withdrawal of NO is planned.  相似文献   

9.
OBJECTIVE: To compare the effects of inhaled nitric oxide (NO) and extracorporeal membrane oxygenation (ECMO) on oxygenation, hemodynamics, and lymphatic drainage in an oleic acid lung injury model in sheep. DESIGN: Prospective, randomized study. SETTING: Animal research laboratory. ANIMALS: Thirty female sheep, weighing 35 to 40 kg. INTERVENTIONS: Acute lung injury was induced by central venous injection of oleic acid (0.5 mL/kg body weight). A chronic lymph fistula had been prepared through a right thoracotomy 3 days before the experiment. Animals were assigned randomly to the NO group (n = 14) or the ECMO group (n = 16). When a lung injury score of > 2.5 was achieved, the animals were given NO in dosage increments of 2, 5, 10, 20, and 40 parts per million (ppm), or placed on ECMO with an FIO2 of 0.21 (ECMO-21) and then 1.0 (ECMO-100) at the oxygenator. Mechanical ventilator parameters were kept constant to isolate the effects of NO and ECMO on systemic and pulmonary hemodynamics, cardiac output, oxygenation parameters, lymph/plasma protein ratio, and lymph flow. Measurements and calculations were performed after 1 hr at each individual step of NO concentration or FIO2. MEASUREMENTS AND MAIN RESULTS: In the ECMO group, PVRI and MPAP did not change and were significantly different from the NO group. In the NO group, there was a dose-dependent decrease in venous admixture, maximal at 10 ppm NO and decreasing from 40 +/- 6% to 23 +/- 10% (p < .05). This decrease was significantly different from the ECMO group, where there was no change. There was a significant increase in PaO2/FIO2 in the NO group, maximal at 10 ppm NO (84 +/- 11 to 210 +/- 90, p < .05), but a greater increase in PaO2/FIO2 on ECMO-21 (81 +/- 14 to 265 +/- 63) and a further increase on ECMO-100 (398 +/- 100) (p < .05). The lymph/plasma protein ratio remained unchanged in both groups after induction of lung injury by oleic acid. However, lymph flow decreased by 11 +/- 6% in the NO group, whereas it increased by 14 +/- 17% in the ECMO group (p < .05). CONCLUSIONS: In an oleic acid-induced sheep model of acute lung injury, there were significant differences between the effects of NO and ECMO on acute pulmonary hypertension, hypoxemia, hypercarbia, and lymph flow. NO significantly decreases pulmonary hypertension, whereas pulmonary hemodynamics were not substantially affected by ECMO. Both interventions reversed hypoxemia, but ECMO did so to a greater degree, and only ECMO improved hypercarbia. Only NO decreased lymph flow, possibly as an effect of decreased microvascular filtration pressure. This study did not attempt to evaluate the impact of these interventions on ventilatory requirements, barotrauma, or outcome. However, this model suggests that NO therapy may moderate pulmonary hypertension and improve lymph flow in acute lung injury. Clinical studies are needed to assess whether NO therapy might be beneficial in treatment of severe acute lung injury in older children and adults.  相似文献   

10.
OBJECTIVE: To determine whether the decrease in cardiac output after nitric oxide synthase inhibition in endotoxemia is due to increased left ventricular afterload or right ventricular afterload. DESIGN: Prospective, randomized, unblinded study. SETTING: Research laboratory at an academic, university medical center. SUBJECTS: Nonanesthetized, sedated, mechanically ventilated pigs. INTERVENTIONS: Pigs were infused with 250 microg/kg of endotoxin over 30 mins. Normal saline was infused to maintain pulmonary artery occlusion pressure (PAOP) at a value not exceeding 1.5 times the baseline value. Left ventricular dimensions and function were studied using echocardiography. Right ventricular volumes and ejection fraction were determined via a rapid thermistor pulmonary artery catheter. We also measured mean arterial pressure (MAP), cardiac output, pulmonary arterial pressure, and calculated pulmonary and systemic resistances. Gastric tonometry was used as an index of gastric mucosal oxygenation and peripheral oxygenation. When MAP had decreased to < or =60 mm Hg or had decreased 30 mm Hg from baseline, nine animals received NG-nitro-L-arginine methyl ester (L-NAME) at 15 mg/kg to restore MAP to baseline. A second group of animals (n = 6) continued to receive normal saline, ensuring that PAOP did not exceed 1.5 times its baseline value. A third group of pigs (n = 5) did not receive endotoxin and served as the time control. In this group, a balloon was used to occlude the descending thoracic aorta and to increase MAP by approximately the same amount as in the L-NAME group. MEASUREMENTS AND MAIN RESULTS: Endotoxin caused an increase in pulmonary arterial pressure and right ventricular volumes, and a decrease in gastric mucosal pH. Cardiac output was maintained in the animals receiving the saline infusion. By 2 hrs, pulmonary arterial pressure had decreased but was still notably higher than baseline. However, by this time, MAP had decreased to < or =60 mm Hg. L-NAME administration restored MAP to its baseline value but resulted in worsening pulmonary hypertension, increased right ventricular volumes, and decreased cardiac output, compared with the saline group. Three animals that received L-NAME died of right ventricular failure. We did not observe any evidence of left ventricular dysfunction with increased left ventricular afterload. Moreover, the restoration of MAP with L-NAME infusion did not correct gastric mucosal acidosis. No changes were noted in the time-control group. Occlusion of the thoracic aorta increased MAP but did not change cardiac output. This finding demonstrates that increases in left ventricular afterload of the magnitude seen with the infusion of L-NAME do not lead to decreases in cardiac output. CONCLUSION: The decrease in cardiac output after nitric oxide synthase inhibition in endotoxemia is due to increased right ventricular afterload and not to left ventricular afterload.  相似文献   

11.
OBJECTIVES: Inhaled nitric oxide (NO) reduces pulmonary hypertension in acute respiratory failure. Soluble nitric oxide donors (NO/nucleophile adducts-NONOates) are less cumbersome to deliver and may offer clinical advantage compared with inhaled NO. The objective of this study was to examine the pulmonary and systemic hemodynamic effects of tracheal aerosolization of a new class of NONOates in a porcine model of experimentally induced pulmonary hypertension. DESIGN: Prospective, randomized, controlled study. SETTING: Research laboratory. SUBJECTS: Yorkshire pigs (n = 18), weighing 11.4 to 16.4 kg. INTERVENTIONS: In anesthetized, mechanically ventilated, instrumented pigs, steady-state pulmonary hypertension (SSPH) was induced using a thromboxane agonist (U46619). Control animals received tracheal aerosolization of saline (n = 6); EP/NO animals received tracheal aerosolization of ethylputreanine NONOate (EP/ NO, n = 6); and DMAEP/NO animals received aerosolized 2-(dimethylamino) ethylputreanine NONOate (DMAEP/NO, n = 6). MEASUREMENTS AND MAIN RESULTS: Mean pulmonary (MPAP) and mean systemic arterial pressures (MAP), atrial pressures, cardiac output, and arterial blood gases were measured following drug instillation. DMAEP/NO animals had significant reductions in pulmonary vascular resistance index (PVRI) and MPAP at all time points compared with SSPH and control animals (p < .05), while systemic vascular resistance index did not change. EP/NO animals had a significant reduction in PVRI and MPAP at some time points compared with SSPH and control animals. For both NONOate-treated animal groups, MAP and cardiac index did not change significantly compared with SSPH and control animals (p < .05). CONCLUSIONS: In this porcine model of pulmonary hypertension, intratracheal aerosolization of soluble NO donors results in sustained reduction of pulmonary hypertension without reducing systemic arterial pressure. Intermittent aerosolization of NONOates may be an alternative to continuously inhaled NO in the treatment of acute pulmonary hypertension.  相似文献   

12.
Insulin resistance and hypertension, as well as dyslipidemia, frequently cooccur. Evidence that nitric oxide (NO) plays a crucial role in the long-term regulation of systolic blood pressure led us to examine whether enhanced vasoconstriction and hypertension induced by NO synthase inhibitor could lead to insulin and lipid disorders. NG-Nitro-L-arginine methyl-ester (L-NAME), an inhibitor of NO synthase, was given for 4 weeks in drinking water (100 mg/kg/day) to 12 Sprague-Dawley rats. Another nine rats received both L-NAME and verapamil (100 mg/kg/day), whereas 12 animals fed rat chow only served as controls. Systolic blood pressure was measured weekly by the indirect tail cuff method. Blood samples were taken at the beginning of the experiment, and after 2 and 4 weeks from all rats. The samples were assayed for insulin, glucose, and triglyceride concentrations. L-NAME treatment resulted in a marked and sustained increase in systolic blood pressure from 130+/-7 to 171+/-3 mm Hg by the second week, which was succeeded by a significant elevation in insulin level at the end of 4 weeks, from 2.3+/-1.8 to 5.4+/-2.0 ng/mL. Triglycerides and glucose were unaffected throughout the experiment. The combination of L-NAME and the NO-independent vasodilator, verapamil, attenuated the hypertension induced by L-NAME and prevented the following rise in insulin level. Data suggest that chronic elimination of NO after chronic inhibition of NO synthase may lead to a state of hyperinsulinemia, possibly as an outcome of insulin resistance.  相似文献   

13.
The hypoxaemia of hepatopulmonary syndrome, seen in severe chronic liver dysfunction, occurs as a result of precapillary pulmonary arterial dilatation and arteriovenous communications. These abnormalities contribute to the mismatch between ventilation and perfusion, and the right to left blood flow shunting. Nitric oxide (NO) is a powerful vasodilator concerned with the regulation of pulmonary vascular tone in man. Using a chemiluminescence analyser, we have measured endogenously produced NO in the exhaled air of three patients with the hepatopulmonary syndrome, six normoxaemic cirrhotic patients and six healthy volunteers. The subjects breathed NO-free air throughout the measurements. The molar rate of production of exhaled NO was raised almost threefold in the patients with hepatopulmonary syndrome compared with normal volunteers and with normoxaemic cirrhotic patients. Hypoxia per se, achieved in the normal volunteers by breathing a hypoxic gas mixture, reduced rather than increased the exhaled NO. One hepatopulmonary syndrome patient received an orthotopic liver transplant and achieved normoxaemia after 3 months. The exhaled NO also returned to normal. Increased pulmonary production of NO could contribute to the development of the hepatopulmonary syndrome.  相似文献   

14.
To investigate the role of superoxide in the toxicity of nitric oxide (NO), we examined the effect of nitric oxide synthase (NOS) inhibition on brain infarction in transgenic mice overexpressing CuZn-superoxide dismutase (SOD-1). Male SOD-transgenic mice and non-transgenic littermates (30-35 g) were subjected to 60 min of middle cerebral artery occlusion followed by 24 h of reperfusion. Either NG-nitro-L-arginine methyl ester (L-NAME; 3 mg/kg), a mixed neuronal and endothelial NOS inhibitor, or 7-nitroindazole (7-NI; 25 mg/kg), a selective neuronal NOS inhibitor, was administered intraperitoneally 5 min after the onset of ischemia. At 24 h of reperfusion, the mice were decapitated and the infarct volume was evaluated in each group. In the nontransgenic mice, L-NAME significantly increased the infarct volume as compared with the vehicle, while 7-NI significantly decreased it. In the SOD-transgenic mice, L-NAME-treated animals showed a significantly larger infarct volume than vehicle-treated ones, whereas there were no significant differences between 7-NI- and vehicle-treated mice. Our findings suggest that selective inhibition of neuronal NOS ameliorates ischemic brain injury and that both neuronal and endothelial NOS inhibition may result in the deterioration of ischemic injury due to vasoconstriction of the brain. Since L-NAME increased infarct volume even in SOD-transgenic mice, the protective effect of SOD could result from the vasodilation by increased endothelial NO as well as the reduction of neuronal injury due to less production of peroxynitrite compared to wild-type mice. Moreover, the neurotoxic role of NO might not be dependent on NO itself, but the reaction with superoxide to form peroxynitrite, because of no additive effects of SOD and a neuronal NOS inhibitor.  相似文献   

15.
The difference of morphological injury between rabbit aorta and pulmonary artery was compared after the animal was exposed to the altitude 5 km (PO2 = 10.8 kPa) for 24 h. Hypoxia caused subendothelial edema, increased vacuoles and injured mitochondria and endoplasmic reticulums in both kinds of endothelial cells. The impairment of pulmonary artery was obviously more severe than aorta and its smooth muscle cells were also affected. Forthermore, the exposure increased mitochondria in pulmonary artery endothelial cells. Bubbled with a mixture air of 95% N2-5% CO2 (PO2 = 4 kPa) led to an increase of pulmonary in tension, while hypoxia to the same extent induced aorta relaxation. These results indicate that hypoxia produces the differential effects on these two kinds of vessels, providing a possible explanation for the production of hypoxic pulmonary hypertension.  相似文献   

16.
OBJECTIVE: To determine whether laryngeal hemiplegia would increase transmural pulmonary artery pressure (TPAP). ANIMALS: 6 horses. DESIGN: Horses were studied under 5 conditions: control conditions, after induction of left laryngeal hemiplegia, during obstruction of the left nostril, after placement of an instrumented tracheostomy, and after placement of an open tracheostomy. Horses were evaluated after being given saline solution and after being given furosemide. PROCEDURES: Horses were exercised on a high speed treadmill, using a maximum speed of 13 m/s. During each exercise, airway pressures, airflow, esophageal and pulmonary artery pressures, and blood gas partial pressures were measured. RESULTS: When adjusted for horse, speed, and obstruction condition, mean TPAP (pulmonary artery pressure-esophageal pressure) and minimum TPAP were significantly lower after administration of furosemide than after administration of saline solution. In horses given saline solution, respiratory obstruction that increased intrapleural pressure significantly increased mean TPAP, and respiratory obstruction that decreased intrapleural pressure significantly decreased minimum TPAP. CONCLUSIONS: Changes in intrapleural pressure appear to play an important role in pulmonary artery pressure and TPAP. CLINICAL RELEVANCE: Because induction of laryngeal hemiplegia did not increase TPAP, laryngeal hemiplegia is unlikely to contribute to development of exercise-induced pulmonary hemorrhage.  相似文献   

17.
The pathophysiology of the lamb model of congenital diaphragmatic hernia (CDH) involves pulmonary hypoplasia, pulmonary hypertension, and surfactant deficiency. Inhaled nitric oxide (NO) is a highly selective pulmonary vasodilator. The aim of this study was to determine the effects of inhaled NO on pulmonary gas exchange, acid-base balance, and pulmonary pressures in a lamb model of CDH with or without exogenous surfactant therapy. At the gestational age of 78 days (full term, 145 days) 11 lamb fetuses had a diaphragmatic hernia created via a left thoracotomy and then were allowed to continue development in utero. After cesarean section, performed at term, six lambs received exogenous surfactant therapy (50 mg/kg, Infasurf) and five served as controls. All animals were pressure-ventilated for 30 minutes and then received 80 ppm of inhaled NO at an F1O2 of .9 for a 10-minute interval. Compared with the control lambs, the lambs with exogenous surfactant therapy had higher pH (7.17 +/- .06 v 6.96 +/- .07; P < .05), lower PCO2 (73 +/- 8 v 122 +/- 20, p < .05), and higher PO2 (153 +/- 38 v 50 +/- 23; P < .05). In control CDH lambs (without surfactant), inhaled NO did not improve pH, PCO2, or PO2, or decrease pulmonary artery pressure. In CDH lambs given exogenous surfactant, NO decreased pulmonary artery pressures (42 +/- 4 v 53 +/- 5; P < .005) and further improved PCO2 and PO2. NO also made the difference between pulmonary and systemic artery pressures more negative in the surfactant-treated lambs (-15 +/- 4 v -2.3 +/- 2.4; P < .005).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
1. The aims of the present study were to detect changes in superoxide anion (O2.-), nitric oxide (NO) and other reactive oxygen species (ROS) directly by measurement of chemiluminescence (CL) and to investigate the role of L-arginine, a nitric oxide synthase (NOS) substrate, and NG-nitro-L-arginine methyl ester (L-NAME), a NOS inhibitor, together with their molecular enantiomers D-arginine and D-NAME, in a rat mesenteric ischaemia-reperfusion (I/R) model. 2. Seventy-nine female Wistar albino rats were divided into eight groups. The first three groups underwent sham operation; group 1 was the control group, group 2 received L-arginine and group 3 received L-NAME. Ischaemia was produced in the remaining five groups by ligation of the superior mesenteric artery for 30 min followed by 60 min reperfusion. Group 4 rats were control I/R rats and groups 5-8 received either L-arginine, L-NAME, D-arginine or D-NAME, respectively. 3. Both luminol and lucigenin CL was significantly increased in I/R groups compared with sham-operated groups. L-Arginine significantly reduced CL measurements. D-Arginine was also protective, but not as much as L-arginine. Both L- and D-arginine had in vitro O2.- (-)scavenging potential, as tested by the xanthine-xanthine oxidase system. NG-Nitro-L-arginine methyl ester decreased lipid peroxidation values in addition to reducing CL measurements. Nitric oxide concentrations were significantly increased in I/R groups in comparison with sham-operated groups. Peroxynitrite formation was increased by I/R. Treatment with L-NAME was beneficial by reducing NO concentrations in the reperfused ileum. 4. In our I/R model, O2.-, NO and other ROS were increased. Although NOS inhibitors were effective in reducing oxidative damage, increasing NO concentrations with L-arginine was also beneficial, presumably due to the ability of L-arginine to inhibit phagocyte adherence and its radical scavenging potential. In fact, NO may have different effects in terms of tissue injury or protection depending on the concentration of oxygen and the haemodynamic state of the tissue.  相似文献   

19.
Others have shown that inhaled nitric oxide causes reversal of pulmonary hypertension in anaesthetized perinatal sheep. The present study examined haemodynamic responses to inhaled NO in the normal and constricted pulmonary circulation of unanaesthetized newborn lambs. Three experiments were conducted on each of 7 lambs. First, to determine a minimum concentration of NO which could reverse acute pulmonary hypertension caused by infusion of the thromboxame mimic U46619, the haemodynamic effects of 5 different doses of inhaled NO were examined. Second, the effects of inhaling 80 ppm NO during hypoxic pulmonary vasoconstriction were examined. Finally, to determine if tachyphalaxis occurs during NO inhalation, lambs were exposed to 80 ppm NO for 3 h during which time pulmonary arterial pressure was doubled by infusion of U46619. Breathing NO (80 ppm) caused a slight but significant decrease in pulmonary vascular resistance (PVR) in lambs with normal pulmonary arterial pressure (PAP). Nitric oxide, inhaled at concentrations between 10 and 80 ppm for 6 min (F1O2 = 0.60), caused decreases in PVR when PAP was elevated with U46619. Nitric oxide acted selectively on the pulmonary circulation, i.e. no changes occurred in systemic arterial pressure or any other measured variable. Breathing 80 ppm NO for 6 min reversed hypoxic pulmonary vasoconstriction. In the chronic exposure study, inhaling 80 ppm NO for 3 h completely reversed U46619-induced pulmonary hypertension. Although arterial methaemoglobin increased during the 3-h exposure to 80 ppm NO, there was no indication that this concentration of NO impairs oxygen loading. These data demonstrate that NO, at concentrations as low as 10 ppm, is a potent, rapid-action, and selective pulmonary vasodilator in unanaesthetized newborn lambs with elevated pulmonary tone. Furthermore, these data support the use of inhaled NO for treatment of infants with pulmonary hypertension.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号