共查询到19条相似文献,搜索用时 62 毫秒
1.
将图像集合表示为格拉斯曼流形上的点能够获得更好的识别性能.传统格拉斯曼流形上的判别分析方法仅考虑了带标签样本的统计信息,忽略了无标签样本.鉴于此,基于流形正则化思想,提出了一个新的格拉斯曼流形上的半监督判别分析方法(SDAGM),将其应用于图像集合的识别问题.通过构建近邻图刻画格拉斯曼流形上的所有样本局部几何结构,并使其作为正则化项添加到格拉斯曼流形上的判别分析目标函数中,本文方法不但考虑标签信息,而且利用了一致性假设.标准数据集上的实验结果表明了SDAGM的有效性. 相似文献
2.
与无监督聚类相比,半监督聚类是利用一部分先验信息来更好地挖掘和理解数据的内在结构,并紧密遵从用户的偏好。现有的典型半监督聚类算法仅仅适合于低维数据,文中提出一种新颖的基于判别分析的半监督聚类算法来解决高维数据聚类问题。新算法首先使用主成分分析来投影高维数据,进一步在投影空间中,使用基于球形K均值聚类算法对数据聚类;然后利用聚类结果,使用线性判别分析降维输入空间数据;最后在投影空间中对数据再次聚类。在一组真实数据集上的实验表明,所提出的算法不仅可以有效地处理高维数据,还提高了聚类性能。 相似文献
3.
将流形距离作为样本间相似性的基本度量测度,加入成对约束信息,通过近部传播得出新的度量矩阵。把聚
类问题转化为一优化数学模型。采用克隆选择算法求解这个优化模型,得出最后的聚类结果,通过人工数据集和UCI
标准数据集验证了这种方法具有较高的准确性。 相似文献
4.
《计算机辅助设计与图形学学报》2014,(7)
针对传统黎曼流形上判别分析算法仅考虑了带标签数据统计信息,忽略了无标签数据的问题,基于图正则化思想,提出一个新颖的基于黎曼流形框架上半监督判别分析算法,并将其应用于视觉分类任务中.该算法将非奇异协方差矩阵表示为黎曼流形上的点,引入JBLD(Jensen-Bregman LogDet divergence)度量黎曼流形上点与点之间相似性测度.首先将数据点映射到黎曼切空间中,获得数据向量化表示;其次采用有标签数据和无标签数据构建近邻图刻画黎曼切空间局部几何结构,使其作为正则化项添加到费舍尔测地线判别分析目标函数中;最后最小化目标函数获取最优变换矩阵,并在变换黎曼流形中进行分类.在3个视觉分类数据集上实验结果表明,文中算法在分类精度上获得了相当大的提升. 相似文献
5.
为了克服加权线性判别分析(WLDA)只利用有标签的训练样本而不能反映样本数据流形结构的缺点,提出一种正则化的半监督判别分析方法。首先构建所有样本的近邻图来估计数据的局部流形结构,然后将此作为正则项引入WLDA的准则函数中。该方法避免了类内散度矩阵奇异,同时保持了样本数据的判别结构和几何结构。在ORL和YALE人脸数据库上的实验结果证明了该算法的有效性。 相似文献
6.
通过学习数据集的低维流形结构,给出一种流形距离测度;结合成对约束信息,调整数据的相似度矩阵,将其作为近邻传播算法的输入,提出了基于流形距离的半监督近邻传播聚类算法(SAP-MD)。通过在UCI标准数据集上的仿真实验表明,SAP-MD算法相比于仅利用成对约束信息的聚类算法,在聚类性能上有很大提高。 相似文献
7.
子空间半监督Fisher判别分析 总被引:1,自引:2,他引:1
Fisher判别分析寻找一个使样本数据类间散度与样本数据类内散度比值最大的子空间, 是一种很流行的监督式特征降维方法. 标注样本数据所属的类别通常需要大量的人工, 消耗大量的时间, 付出昂贵的成本. 为了解决同时利用有类别信息的样本数据和没有类别信息的样本数据用于寻找降维子空间的问题, 我们提出了一种子空间半监督Fisher判别分析方法. 子空间半监督Fisher判别分析寻找这样一个子空间, 这个子空间即保留了从有类别信息的样本数据中学习的类别判别结构, 也保留了从有类别信息的样本数据和没有类别信息的样本数据中学习的样本结构信息. 我们还推导了基于核的子空间半监督Fisher判别分析方法. 通过人脸识别实验验证了本文算法的有效性. 相似文献
8.
在许多模式识别任务中,研究者常常使用有标记样本的信息,而忽略无标记样本信息,但在现实生活中有标记样本的获得可能需要花费大量的人力、物力、财力,而无标记数据的获得却相对容易得多。如何利用无标记的数据来增强分类器的性能成为近年来模式识别中的研究热点。在以往的半监督增强学习中,主要是根据无标记样本和有标记样本的相似度来利用无标记样本的,相似度主要使用欧氏距离来度量,而欧氏距离只反映样本间的空间位置关系,没有反映样本间的流形信息。因此,提出了基于测地距离的半监督增强学习算法,从而可以反映样本空间的流形信息。多个数据库上的实验结果表明提出算法的有效性。 相似文献
9.
基于半监督流形学习的人脸识别方法 总被引:1,自引:0,他引:1
如何有效地将流形学习(Manifold learning,ML)和半监督学习(Semi-supervised learning,SSL)方法进行结合是近年来模式识别和机器学习领域研究的热点问题.提出一种基于半监督流形学习(Semi-supervised manifold learning,SSML)的人脸识别方法,它在部分有标签信息的人脸数据的情况下,通过利用人脸数据本身的非线性流形结构信息和部分标签信息来调整点与点之间的距离形成距离矩阵,而后基于被调整的距离矩阵进行线性近邻重建来实现维数约简,提取低维鉴别特征用于人脸识别.基于公开的人脸数据库上的实验结果表明,该方法能有效地提高人脸识别的性能. 相似文献
10.
基于部件的级联线性判别分析人脸识别 总被引:1,自引:0,他引:1
文章提出一种基于人脸部件表示的级联线性判别分析人脸识别方法。该方法将人脸图像划分为具有交叠区域的多个部件,对每个部件应用线性判别分析以寻找该部件的判别方向,然后对所有部件应用线性判别分析以寻找总体最优判别方向。以从该级联线性判别分析提取的特征作为人脸描述。在FERET人脸库上的人脸识别和人脸确认的实验结果表明,该方法优于传统的基于全局图像的Fisherface方法。 相似文献
11.
流形上的Laplacian半监督回归 总被引:2,自引:0,他引:2
把流形学习与半监督学习相结合,研究了流形上的半监督回归问题.简要介绍了半监督流形学习的Laplacian正则化框架,在此基础上推导了基于一类广义损失函数的Laplacian半监督回归,它能够利用数据所在流形的内在几何结构进行回归估计.具体给出了线性ε-不敏感损失函数,二次ε-不敏感损失函数和Huber损失函数的Laplacian半监督回归算法,在模拟数据和Boston Housing数据上对算法进行了实验,并对实验结果进行了分析.这些结果将为进一步深入研究半监督流形回归问题提供一些可借鉴的积累. 相似文献
12.
13.
流形学习算法的目的是发现嵌入在高维数据空间中的低维表示,现有的流形学习算法对邻域参数k和噪声比较敏感。针对此问题,文中提出一种流形距离与压缩感知核稀疏投影的局部线性嵌入算法,其核心思想是集成局部线性嵌入算法对高维流形结构数据的降维有效性与压缩感知核稀疏投影的强鉴别性,以实现高效有降噪流形学习。首先,在选择各样本点的近邻域时,采用流形距离代替欧氏距离度量数据间相似度的方法,创建能够正确反映流形内部结构的邻域图,解决以欧氏距离作为相似性度量时对邻域参数的敏感。其次,利用压缩感知核稀疏投影作为从高维观测空间到低维嵌入空间的映射,增强算法的鉴别性。最后,利用Matlab工具对实验数据集进行仿真,进一步验证所提算法的有效性。 相似文献
14.
15.
一种基于马氏距离的线性判别分析分类算法 总被引:7,自引:0,他引:7
对于一个特定的模式识别问题,表达和识别模式的特征具有不同的形式,它们在物理意义上是完全不同的,而且在数量级具有很大差别。该文提出了一种基于马氏距离的线性判别分析分类算法,选取判别函数为马氏距离,可以适用于具有不同类型特征值的分类问题。将该算法应用于UCI中Credit-A、Credit-G、Iris和Vehicle四个数据库的分类,并采用K次交叉验证方法进行实验。从实验结果中可知,与ENTROPY算法和C4.5(8)算法分类效果相比较,该文所提出的线性判别分析算法计算简单,识别率较高,是一种实际可行的分类算法。 相似文献
16.
稀疏保留投影( SPP)是一种保留样本间的稀疏重构关系的特征提取方法。但是根据流形学习理论,考虑局部流形结构比考虑全局欧氏结构更重要。此外,SPP得到的不是一组正交的投影向量,特征间存在冗余信息。为解决该问题,文中提出一种改进的稀疏保留投影算法,在SPP中引入有监督的流形学习,使得所得投影空间正交,并用迭代的方式求解最优投影变换,称为基于流形学习的迭代正交稀疏保留鉴别分析( MLIOSDA)。同时提出一种终止准则终止迭代。在CAS-PEAL人脸数据库和PolyU掌纹数据库的实验结果表明,文中提出的方法与一些相关方法相比有效地提高了识别结果。 相似文献
17.
针对线性数据降维算法对处理非线性结构数据的降维效果不是很好,提出一种基于重叠片排列的流形学习算法,该算法根据局部的线性贴片处在非线性流形中的特性,将流形划分为线性互相重叠的局部区域贴片,且利用主成分分析方法得到局部区域贴片的低维表示,然后排列且对齐其低维坐标,以获得整体数据的低维坐标.通过仿真结果证明,基于重叠片排列的流形学习算法在应用于人脸识别和分类问题时以及在识别准确率方面要优于其他经典的流形学习算法. 相似文献
18.
19.
基于Laplacian正则化最小二乘的半监督SAR目标识别 总被引:3,自引:0,他引:3
提出了一种基于核主成分分析(kernel principal component analysis,简称KPCA)和拉普拉斯正则化最小二乘(Laplacian regularized least squares,简称LapRLS)的合成孔径雷达(synthetic aperture radar,简称SAR)目标识别方法.KPCA特征提取方法不仅能够提取目标主要特征,而且有效地降低了特征维数.Laplacian正则化最小二乘分类是一种半监督学习方法,将训练集样本作为有标识样本,测试集样本作为无标识样本,在学习过程中将测试集样本包含进来以获得更高的识别率.在MSTAR实测SAR地面目标数据上进行实验,结果表明,该方法具有较高的识别率,并对目标角度间隔具有鲁棒性.与模板匹配法、支撑矢量机以及正则化最小二乘监督学习方法相比,具有更高的SAR目标识别正确率.此外,还通过实验分析了不同情况下有标识样本数目对目标识别性能的影响. 相似文献