首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
采用DSC法对铝热法制备钒铝合金反应动力学进行研究。运用Flynn-Wall-Ozawa法求得反应活化能,然后使用Kissinger法验证Flynn-Wall-Ozawa法求得反应活化能的可靠性,两种方法所求得活化能基本保持一致;取两种方法所求得平均活化能,代入Kissinger-Crane法求解铝热反应其他动力学参数,建立反应动力学方程。结果表明,铝热法制备钒铝合金的平均表观活化能为386.5 k J/mol,反应级数为1.04,指前因子为3.361×10~(30)min~(-1)。  相似文献   

2.
在升温速率分别为10、15、20和25℃·min-1的条件下,利用差示扫描量热仪对红土镍矿非自由水脱除过程进行了测试.针对测试数据,分别采用Flynn-Wall-Ozawa(FWO)法、胡荣祖-高红旭-张海(Hu GZ)法、Boswell法、Starink法、Friedman-Reich-Levi(Friedman)法等不同的转化率法计算其活化能,利用Malek法计算指前因子(A)以及确定机理函数,最后利用所得的动力学公式推导出等温下反应进度与时间的关系并对不同温度下的能耗进行分析比较.红土镍矿非自由水脱除过程的平均活化能为181.50 k J·mol-1;指前因子ln A为21.95 min-1;机理函数符合Z-L-T方程,即脱除过程为三维扩散控制机制;干燥温度越高所需的平均功率越小.   相似文献   

3.
采用热分析动力学方法,研究了不同升温速率条件下氧化铁皮的非等温碳热还原动力学,采用Flynn-Wall-Ozawa法和?atava-?esták法计算了反应动力学参数中的活化能,确定了反应机制函数。结果表明,随着升温速率的增大,反应的起始温度逐渐增加。当升温速率为15 K/min,反应起始温度为950℃左右,还原反应进行的最彻底,还原率几乎接近1。当还原反应进入平台期时,还原率不再随温度的变化而改变。用Flynn-Wall-Ozawa法计算的活化能为377.29 kJ/mol,碳的气化反应、化学界面反应和内扩散均在碳热还原过程中起限制作用。A3/2是氧化铁皮碳热还原的机制函数,并根据得到的动力学参数建立了非等温还原模型,函数为g(α)=[-ln (1-α)]2/3和f (α)=3/2(1-α)[-ln (1-α)]1/3。  相似文献   

4.
为了深入了解COREX块煤在高温下的裂解机理,对所用块煤进行了不同温度下的高温干馏试验,确定不同温度下块煤焦油析出规律,之后分别采用混合模型法和分段法研究其干馏过程反应动力学,计算了相应的活化能和其他动力学参数.结果表明:混合模型法拟合得到3个阶段反应级数n分别为0.5、0.8、1.0,且活化能随着温度升高而增加,但由于该方法放弃反应模型物理意义,得到的只是表观活化能.分段法则根据煤干馏不同过程,确定了反应过程的机理分别为非等温收缩核、一级热解反应和分子扩散的反Jander模型,3个反应阶段的活化能分别为27.82、63.41、84.04 kJ/mol,间接地反映出块煤的裂解动力学特性,同时可为COREX熔融气化炉的数值模拟提供动力学参数.  相似文献   

5.
采用热分析(TG、DTG、DSC)技术,在不同升温速率下进行高结晶水褐铁矿热分解非等温动力学研究。结果表明:高结晶水褐铁矿热分解过程分为缓慢热阶段和快速热阶段,采用改良Coats-Redffen积分法进行了非等温动力学参数计算,拟合线性相关性都在0.98以上。缓慢阶段和快速阶段的表观活化能分别为18.69~20.63kJ/mol和94.31~102.55kJ/mol;升温速率对褐铁矿结晶水缓慢热分解阶段的影响不大,缓慢阶段热分解反应级数n=0.8,结晶水快速阶段热分解反应级数n=1。  相似文献   

6.
采用DSC、TG热分析方法,对偏钒酸铵的热分解机理进行了研究。分析表明,热分解过程包括4个步骤,前三步吸热反应以及最后一步放热反应。利用Kissinger法以及Kissinger-Crane法对V2O5生成反应动力学参数进行计算,建立反应速率方程。结果表明,偏钒酸铵热分解过程为第三步化学反应控速,反应的活化能为156.60 k J/mol,指前因子为2.43×1014min-1,反应级数为0.94。  相似文献   

7.
唐爱东  黄可龙  彭宏  张红萍 《稀有金属》2004,28(6):1024-1028
采用热重分析、差热分析及X射线衍射等技术研究了硝酸高铈铵的热分解过程 ,特别是用差热分析仪测试了不同升温速率下硝酸高铈铵在静止的空气气氛中的差热曲线 ,结合Kissinger法和Coats -Redfern法研究硝酸高铈铵的热分解动力学 ,计算了两个主要的反应阶段的表观活化能为 1 4 4 .61 ,1 2 4 .31kJ·mol- 1 ,并确定了反应级数、频率因子、速率常数 ,推导出每个反应阶段的动力学方程 ,控制反应过程的步骤分别为随机成核和随后生长 ,符合Arrami Erofeer方程。  相似文献   

8.
 采用差示扫描量热法(DSC)对非晶态高炉渣的析晶过程进行研究,得出不同升温速率下非晶态高炉渣析晶过程的DSC曲线,并根据动态DSC曲线用Kissinger法求出了析晶反应的活化能、反应级数及动力学方程中的指前因子等参数,建立了非晶态高炉渣析晶反应动力学的数学模型。实验所用非晶态高炉渣的析晶反应活化能为376.466 kJ/mol,该反应为一级反应。非晶态高炉渣的DSC曲线在1130~1310 K的温度区间内呈现出单一的晶化放热峰,峰顶温度、析晶温度和反应级数随升温速率的提高而提高。  相似文献   

9.
对铁酸锌非等温碳热还原反应动力学及其还原反应机理进行了研究.通过不同温度条件下还原后的铁酸锌团块物相分析(XRD)对其碳热还原的物相转变过程进行了解析,950℃时出现FeO0.85·x ZnO无定型物质,此时Fe3+被还原成Fe2+.探讨了铁酸锌碳热还原过程转化率与转化速率的关系,该还原过程可以划分为三个阶段,第二阶段的转化率变化最大(0.085~0.813).最后,通过等转化率法和主曲线拟合法对不同升温速率条件下铁酸锌碳热还原第二阶段的动力学进行了分析,可以得出第二阶段的平均活化能为362.16 kJ·mol–1,且该阶段活化能为331.01~490.04 kJ·mol–1,变化较大,说明这一阶段发生的反应较为复杂,且各反应之间的活化能差异明显,二级化学反应是这一阶段的主要控速环节,并确定了第二阶段的主要控速方程.  相似文献   

10.
利用Labsys同步热分析仪以非等温热重分析研究了碳气化反应动力学,考察了升温速率对碳气化反应的影响.在非等温热重分析中,Doyle和Gorbatchev近似函数都可以模拟碳气化反应过程.通过对比这两个函数拟合实验数据的相关系数,确定在使用非等温热重分析研究碳气化反应动力学时,使用Gorbatchev函数是求取反应动力学参数的较好方法.结果表明:活化能和指前因子都随着升温速率的增加而减小.活化能和指前因子之间有着较好的线性关系,碳气化反应过程中存在着动力学补偿效应.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号