首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Many diseases might be treated by gene therapy targeted to the hematopoietic system, but low rates of gene transfer achieved in humans and large animals have limited the application of this technique. We have developed a competitive hematopoietic repopulation assay in baboons to evaluate methods for improving gene transfer and have used this method to compare gene transfer rates for retroviral vectors having an envelope protein (pseudotype) from amphotropic murine retrovirus with similar vectors having an envelope protein derived from gibbon ape leukemia virus (GALV). We hypothesized that vectors with a GALV pseudotype might perform better based on our previous work with cultured human hematopoietic cells. CD34(+) marrow cells from each of four untreated baboons were divided into two equal portions that were cocultivated for 48 hours with packaging cells producing equivalent titers of either amphotropic or GALV pseudotyped vectors containing the neo gene. The vectors contained small sequence differences to allow differentiation of cells genetically marked by the different vectors. Nonadherent and adherent cells from the cultures were infused into animals after they received a myeloablative dose of total body irradiation. Polymerase chain reaction (PCR) analysis for neo gene-specific sequences in colony-forming unit-granulocyte-macrophage from cell populations used for transplant showed gene transfer rates of 2.7%, 7.1%, <15%, and 3.9% with the amphotropic vectors and 7.1%, 11.3%, <15%, and 26.4% with the GALV pseudotyped vector. PCR analysis of peripheral blood and marrow cells after engraftment showed the neo gene to be present in all four animals analyzed at levels between 0.1% and 5%. Overall gene transfer efficiency was higher with the GALVpseudotyped vector than with the amphotropic vectors. Southern blot analysis in one animal confirmed a gene transfer efficiency of between 1% and 5%. The higher gene transfer efficiency with the GALV-pseudotyped vector correlated with higher levels of GALV receptor RNA compared with the amphotropic receptor in CD34(+) hematopoietic cells. These results show that GALV-pseudotyped vectors are capable of transducing baboon marrow repopulating cells and may allow more efficient gene transfer rates for human gene therapy directed at hematopoietic cells. In addition, our data show considerable differences in gene transfer efficiency between individual baboons, suggesting that a competitive repopulation assay will be critical for evaluation of methods designed to improve gene transfer into hematopoietic stem cells.  相似文献   

2.
Pit1 is the human receptor for gibbon ape leukemia virus (GALV) and feline leukemia virus subgroup B (FeLV-B), while the related human protein Pit2 is a receptor for amphotropic murine leukemia virus (A-MuLV). The A-MuLV-related isolate 10A1 can utilize both Pit1 and Pit2 as receptors. A stretch of amino acids named region A was identified in Pit1 (residues 550 to 558 in loop 4) as critical for GALV and FeLV-B receptor function. We have here investigated the role of region A in A-MuLV and 10A1 entry. Insertion of a single amino acid in region A of mouse Pit1 resulted in a functional A-MuLV receptor, showing that region A plays a role in A-MuLV infection. Moreover, the downregulation of 10A1 receptor function by changes in region A of human Pit1 indicates that this region is also involved in 10A1 entry. Therefore, region A seems to play a role in infection by all viruses utilizing Pit1 and/or Pit2 as receptors.  相似文献   

3.
PVC-441 murine leukemia virus (MuLV) is a member of the PVC group of Friend MuLV (F-MuLV)-derived neuropathogenic retroviruses. In order to determine the molecular basis for the difference in neuropathogenicity between PVC-441 and the previously characterized PVC-211 MuLVs, the entire nucleotide sequence of PVC-441 MuLV was determined and compared with those of PVC-211 and F-MuLV. The results suggest that PVC-441 and PVC-211 MuLVs were formed as a result of random mutations of F-MuLV and developed differently. The distinct pathogenicities of PVC-441 and PVC-211 MuLVs were maintained in the viruses regenerated from their molecular clones, and the sequences responsible for the pathological differences observed can be localized to the env gene. The amino acid sequence of PVC-441 deduced from its nucleotide sequence revealed a number of differences from PVC-211, the most striking of which was a difference at position 129 of the SU proteins in the two viruses. Host range studies with a brain capillary endothelial cell line (RTEC-6) and Chinese hamster ovary cells (CHO-K1) revealed that PVC-441, like PVC-211, could infect these cells but its efficiency of infection was lower than that of PVC-211. These results may account for the difference in neuropathogenicity between PVC-441 and PVC-211.  相似文献   

4.
The 10A1 murine leukemia virus (MuLV) is a recombinant type C retrovirus isolated from a mouse infected with amphotropic MuLV (A-MuLV). 10A1 and A-MuLV have 91% amino acid identity in their envelope proteins yet display different host ranges. For example, CHO-K1 cells are resistant to A-MuLV but susceptible to infection by 10A1. We have now determined that retroviral vectors bearing altered A-MuLV envelope proteins containing 10A1-derived residues at positions 71 (A71G), 74 (Q74K), and 139 (V139M) transduce CHO-K1 cells at efficiencies similar to those achieved with 10A1 enveloped vectors. A-MuLV enveloped retroviral vectors with these three 10A1 residues were also able to transduce A-MuLV-infected NIH 3T3 cells. This observation is consistent with the ability of vectors bearing this altered A-MuLV envelope protein to recognize the 10A1-specific receptor present on NIH 3T3 cells and supports the possibility that residues at positions 71, 74, and 139 of the 10A1 envelope SU protein account for the expanded host range of 10A1.  相似文献   

5.
The vast majority of recombinant polytropic murine leukemia viruses (MuLVs) generated in mice after infection by ecotropic MuLVs can be classified into two major antigenic groups based on their reactivities to two monoclonal antibodies (MAbs) termed Hy 7 and 516. These groups very likely correspond to viruses formed by recombination of the ecotropic MuLV with two distinct sets of polytropic env genes present in the genomes of inbred mouse strains. We have found that nearly all polytropic MuLVs identified in mice infected with a substrain of Friend MuLV (F-MuLV57) are reactive with Hy 7, whereas mice infected with Moloney MuLV (Mo-MuLV) generate major populations of both Hy 7- and 516-reactive polytropic MuLVs. We examined polytropic MuLVs generated in NFS/N mice after inoculation with Mo-MuLV-F-MuLV57 chimeras to determine which regions of the viral genome influence this difference between the two ecotropic MuLVs. These studies identified a region of the MuLV genome which encodes the nucleocapsid protein and a portion of the viral protease as the only region that influenced the difference in polytropic-MuLV generation by Mo-MuLV and F-MuLV57.  相似文献   

6.
7.
8.
9.
The complete nucleotide sequence of the integrase (IN) protein coding region of the murine leukaemia virus (MLV) amphotropic strain 4070A is presented. The sequence comprises 1,224 nucleotides, encoding a 408-residue polypeptide of M(r) 46,312. Alignment of the inferred 4070A IN amino acid sequence with the IN proteins of other MLV showed that substitutions are confined largely to segments within the N- and C-terminal domains. In the N-terminal domain the majority of substitutions occur as contiguous 2- to 6-residue blocks, whereas in the C-terminal domain they occur as isolated entities except within a short segment characterized by deletions/insertions. Selection appears to act on the C-terminal 19 residues of IN rather than on the N-terminal residues of ENV (encoded by overlapping reading frames), suggesting a functional role for this segment. Phylogenetic analyses grouped the sequences into two clusters, one comprising IN from the amphotropic strain 4070A and three ecotropic MLV (CAS-BR-E, Moloney and Friend), the other consisting of IN from three ecotropic MLV (two radiation-induced viruses and AKV) and a mink cell focus-forming (MCF) MLV virus. The same dichotomy and cluster composition was obtained from analysis of the long terminal repeat (LTR) regions from these viruses (consistent with the functional interrelationship of IN and LTR) but not from analysis of envelope protein sequences (consistent with the functional independence of ENV proteins from both IN and LTR). Secondary structure predictions supported features determined from the catalytic domain of human immunodeficiency virus and avian sarcoma virus IN, and identified probable structures within the relatively long N- and C-terminal domains of MLV IN proteins.  相似文献   

10.
The hepatitis A virus cellular receptor 1 (HAVcr-1) cDNA codes for a class I integral membrane glycoprotein, termed havcr-1, of unknown natural function which serves as an African green monkey kidney (AGMK) cell receptor for HAV. The extracellular domain of havcr-1 has an N-terminal Cys-rich region that displays homology with sequences of members of the immunoglobulin superfamily, followed by a Thr/Ser/Pro (TSP)-rich region characteristic of mucin-like O-glycosylated proteins. The havcr-1 glycoprotein contains four putative N-glycosylation sites, two in the Cys-rich region and two in the TSP-rich region. To characterize havcr-1 and define region(s) involved in HAV receptor function, we expressed the TSP-rich region in Escherichia coli fused to glutathione S-transferase and generated antibodies (Ab) in rabbits (anti-GST2 Ab). Western blot analysis with anti-GST2 Ab detected 62- and 65-kDa bands in AGMK cells and 59-, 62-, and 65-kDa bands in dog cells transfected with the HAVcr-1 cDNA (cr5 cells) but not in dog cells transfected with the vector alone (DR2 cells). Treatment of AGMK and cr5 cell extracts with peptide-N-glycosidase F resulted in the collapse of the havcr-1-specific bands into a single band of 56 kDa, which indicated that different N-glycosylated forms of havcr-1 were expressed in these cells. Treatment of AGMK and cr5 cells with tunicamycin reduced binding of protective monoclonal Ab (MAb) 190/4, which suggested that N-glycans are required for binding of MAb 190/4 to havcr-1. To test this hypothesis, havcr-1 mutants lacking the N-glycosylation motif at the first site (mut1), second site (mut2), and both (mut3) sites were constructed and transfected into dog cells. Binding of MAb 190/4 and HAV to mut1 and mut3 cells was highly reduced, while binding to mut2 cells was not affected and binding to dog cells expressing an havcr-1 construct containing a deletion of the Cys-rich region (d1- cells) was undetectable. HAV-infected cr5 and mut2 cells but not mut1, mut3, d1-, and DR2 cells developed the characteristic cytoplasmic granular fluorescence of HAV-infected cells. These results indicate that the Cys-rich region of havcr-1 and its first N-glycosylation site are required for binding of protective MAb 190/4 and HAV receptor function.  相似文献   

11.
Two components of a receptor complex for IL-13, the IL-4R and a low affinity IL-13-binding chain, IL-13R alpha 1, have been cloned in mice and humans. An additional high affinity binding chain for IL-13, IL-13R alpha 2, has been described in humans. We isolated a cDNA from the thymus that encodes the murine orthologue of the human IL-13R alpha 2. The predicted protein sequence of murine IL-13R alpha 2 (mIL-13R alpha 2) has 59% overall identity to human IL-13R alpha 2 and is closely related to the murine low affinity IL-13-binding subunit, IL-13R alpha 1. The genes for both mIL-13-binding chains map to the X chromosome. A specific interaction between mIL-13R alpha 2.Fc protein and IL-13 was demonstrated by surface plasmon resonance using a BIACORE instrument. Ba/F3 cells that were transfected with mIL-13R alpha 2 expressed 5000 molecules per cell and bound IL-13 with a single Kd of 0.5 to 1.2 nM. However, these cells did not proliferate in response to IL-13, and the IL-4 dose response was unaffected by high concentrations of IL-13. In contrast, the expression of mIL-13R alpha 1 by Ba/F3 cells resulted in a sensitive proliferative response to IL-13. Consistent with its lower affinity for IL-13, IL-13R alpha 1.Fc was 100-fold less effective than IL-13R alpha 2.Fc in neutralizing IL-13 in vitro. These results show that mIL-13R alpha 2 and mIL-13R alpha 1 are not functionally equivalent and predict distinct roles for each polypeptide in IL-13R complex formation and in the modulation of IL-13 signal transduction.  相似文献   

12.
Tumor necrosis factor (TNF) can induce a variety of cellular responses at low picomolar concentrations. This is in apparent conflict with the published dissociation constants for TNF binding to TNF receptors in the order of 100-500 pM. To elucidate the mechanisms underlying the outstanding cellular sensitivity to TNF, we determined the binding characteristics of TNF to both human TNF receptors at 37 degrees C. Calculation of the dissociation constant (Kd) from the association and dissociation rate constants determined at 37 degrees C revealed a remarkable high affinity for TNF binding to the 60-kDa TNF type 1 receptor (TNF-R1; Kd = 1.9 x 10(-11) M) and a significantly lower affinity for the 80-kDa TNF type 2 receptor (TNF-R2; Kd = 4.2 x 10(-10) M). The high affinity determined for TNF-R1 is mainly caused by the marked stability of ligand-receptor complexes in contrast to the transient interaction of soluble TNF with TNF-R2. These data can readily explain the predominant role of TNF-R1 in induction of cellular responses by soluble TNF and suggest the stability of the TNF-TNF receptor complexes as a rationale for their differential signaling capability. In accordance with this reasoning, the lower signaling capability of homotrimeric lymphotoxin, compared with TNF, correlates with a lower stability of the lymphotoxin-TNF-R1 complex at 37 degrees C.  相似文献   

13.
Mice possess two structural homologues of Drosophila HP1, termed M31 and M32 (Singh et al., 1991). We have previously shown that an M31-specific monoclonal antibody (MoAb), MAC 353, localises to constitutive heterochromatin (Wreggett et al., 1994). Here we report that a MoAb raised against the M32 protein (MAC 385) recognises a 22-kDa protein in murine nuclear extracts and that M32 is distributed in a fine-grain "speckled" pattern within interphase nuclei. M32 is also largely excluded from the large masses of constitutive heterochromatin that are labelled by MAC 353.  相似文献   

14.
The specificity of lymphocyte homing from the blood into a tissue is determined in part by complementary pairs of adhesion receptors on lymphocytes and endothelial cells termed homing receptors and vascular addressins, respectively. The mucosal vascular addressin involved in lymphocyte homing to Peyer's patches is a 66-kDa glycoprotein, MAdCAM-1. Investigation of the regulation and molecular genetics of MAdCAM-1 have been hampered by the lack of a murine cell line expressing this adhesion molecule. We show herein using indirect immunofluorescence studies that MAdCAM-1 can be induced on a murine endothelial cell line, bEnd.3, by cytokines and LPS. Western blot analysis of MAdCAM-1 purified by affinity column chromatography from TNF-alpha-treated bEnd.3 cells demonstrates a 66-kDa protein that comigrates in SDS-PAGE with the MAdCAM-1 constitutively found on high endothelial venules in murine mesenteric lymph nodes. Comparison of MAdCAM-1 expression on the bEnd.3 cells was made to the expression of adhesion molecules ICAM-1 and VCAM-1. MAdCAM-1 and VCAM-1 are not constitutively expressed on the bEND.3 surface but can be induced in a concentration-dependent manner by LPS, TNF-alpha, and IL-1. ICAM-1 is constitutively expressed on the endothelioma surface and expression is increased by TNF-alpha, IL-1, LPS, and IFN-gamma. Surface expression of MAdCAM-1 peaks 12 to 18 h after exposure to TNF-alpha and remains elevated at 48 h, whereas expression of VCAM-1 peaks at 4 h and inducible ICAM-1 peaks between 4 and 18 h. Interestingly, IFN-gamma has differential effects on expression of these three adhesion receptors. IFN-gamma alone induces VCAM-1 and enhances ICAM-1 expression, but does not induce MAdCAM-1. Furthermore, although, preincubation of bEND.3 cells with IFN-gamma modestly increases the induction of ICAM-1 and VCAM-1 in response to TNF-alpha and IL-1, it dramatically reduces the TNF-alpha, IL-1, and LPS-induced expression of MAdCAM-1. MAdCAM-1 on bEnd.3 cells is functional as the murine T lymphoma TK1, known to bind MAdCAM-1, also binds to TNF-alpha-stimulated endothelioma but not to unstimulated cells. This binding is blocked by the antibodies against MAdCAM-1 and against the alpha 4-chain of its integrin receptor, alpha 4 beta 7, on TK1 cells.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

15.
A protein of 33 kDa (p33) that tightly binds to the globular domains of the first complement component, C1q, is thought to serve as the major C1q receptor (gC1qR) on B cells, neutrophils, and mast cells. However, the cellular routing and the subcellular localization of p33/gC1qR are unknown. We have performed confocal laser-scanning microscopy and found that p33/gC1qR is present in intracellular compartments, where it colocalizes with the mitochondrial marker protein, pyruvate dehydrogenase. No surface staining for p33/gC1qR on endothelial EA.hy926 cells was observed. A fusion protein of the p33/gC1qR presequence with green fluorescent protein translocated to the mitochondria of transfected COS-7 cells. Concomitantly, a 6-kDa portion of the fusion protein was proteolytically removed. The 33 amino-terminal residues of the presequence proved sufficient to direct reporter constructs to mitochondria. Association of p33/gC1qR with mitoplasts indicated that the mature protein of 209 residues resides in the matrix and/or the inner membrane of mitochondria. Immunocytochemistry of fetal mice tissues revealed a ubiquitous expression of p33/gC1qR, most prominently in tissues that are rich in mitochondria. Thus, the candidate complement receptor p33/gC1qR of intact cells cannot interact with plasma C1q due to mutually exclusive localizations of the components. The functional role of p33/gC1qR needs to be reconsidered.  相似文献   

16.
Host proteins are incorporated into retroviral virions during assembly and budding. We have examined three retroviruses, human immunodeficiency virus type 1 (HIV-1), simian immunodeficiency virus (SIV), and Moloney murine leukemia virus (Mo-MuLV), for the presence of ubiquitin inside each of these virions. After a protease treatment to remove exterior viral as well as contaminating cellular proteins, the proteins remaining inside the virion were analyzed. The results presented here show that all three virions incorporate ubiquitin molecules at approximately 10% of the level of Gag found in virions. In addition to free ubiquitin, covalent ubiquitin-Gag complexes were detected, isolated, and characterized from all three viruses. Our immunoblot and protein sequencing results on treated virions showed that approximately 2% of either HIV-1 or SIV p6Gag was covalently attached to a single ubiquitin molecule inside the respective virions and that approximately 2 to 5% of the p12Gag in Mo-MuLV virions was monoubiquitinated. These results show that ubiquitination of Gag is conserved among these retroviruses and occurs in the p6Gag portion of the Gag polyprotein, a region that is likely to be involved in assembly and budding.  相似文献   

17.
Mouse hepatitis virus (MHV), a murine coronavirus known to cause encephalitis and demyelination, uses murine homologues of carcinoembryonic antigens as receptors. However, the expression of these receptors is extremely low in the brain. By low-stringency screening of a mouse brain cDNA library, we have identified a member of the pregnancy-specific glycoprotein (PSG) subgroup of the carcinoembryonic antigen gene family. Unlike other PSG that are expressed in the placenta, it is expressed predominantly in the brain. Transfection of the cDNA into COS-7 cells, which lack a functional MHV receptor, conferred susceptibility to infection by some MHV strains, including A59, MHV-2, and MHV-3, but not JHM. Thus, this is a virus strain-specific receptor. The detection of multiple receptors for MHV suggests the flexibility of this virus in receptor utilization. The identification of this virus in receptor utilization. The identification of a PSG predominantly expressed in the brain also expands the potential functions of these molecules.  相似文献   

18.
Comparison of the binding properties of non-glycosylated, glycosylated human leukemia inhibitory factor (LIF) and monoclonal antibodies (mAbs) directed at gp190/LIF-receptor beta subunit showed that most of the low affinity (nanomolar) receptors expressed by a variety of cell lines are not due to gp190. These receptors bind glycosylated LIF produced in Chinese hamster ovary cells (CHO LIF) (Kd = 6.9 nM) but not Escherichia coli-derived LIF or CHO LIF treated with endoglycosidase F. CHO LIF binding to these receptors is neither affected by anti-gp190 mAbs nor by anti-gp130 mAbs and is specifically inhibited by low concentrations of mannose 6-phosphate (Man-6-P) (IC50 = 40 microM), suggesting that they could be related to Man-6-P receptors. The identity of this LIF binding component with the Man-6-P/insulin-like growth factor-II receptor (Man-6-P/IGFII-R) was supported by several findings. (i) It has a molecular mass very similar to that of the Man-6-P/IGFII-R (270 kDa); (ii) the complex of LIF cross-linked to this receptor is immunoprecipitated by a polyclonal anti-Man-6-P/IGFII-R antibody; (iii) this antibody inhibits LIF and IGFII binding to the receptor with comparable efficiencies; (iv) soluble Man-6-P/IGFII-R purified from serum binds glycosylated LIF (Kd = 4.3 nM) but not E. coli LIF. The potential role of Man-6-P/IGFII-R in LIF processing and biological activity is discussed.  相似文献   

19.
After the cloning of murine cytokine synthesis inhibitory factor, it was recognized that a homologous open reading frame was encoded within the Epstein-Barr virus (human herpes virus 4). This viral protein has now been termed viral interleukin 10 (vIL-10) to reflect its protein sequence homology to "cellular" IL-10 (cIL-10, either murine or human IL-10). It is now widely accepted that vIL-10 shares many functions with cIL-10, principally, the ability to enhance survival of newly infected B cells and to diminish the production of IFN-gamma and IL-2 during ongoing immune reactions. The immunomodulatory effect of locally secreted vIL-10 and murine IL-10 (mIL-10) was examined in tumor models using CL8-1 (a BL6 melanoma cell line transfected with the H-2Kb class I gene) in syngeneic animals. Although parental BL6 tumor cells grow in immunocompetent syngeneic hosts, CL8-1 are rejected. To achieve local secretion of vIL-10, we generated vIL-10 retroviral vectors. While nontransduced CL8-1 cells (1 x 10(4)) failed to grow when injected intradermally in C57BL/6 mice, CL8-1 cells (1 x 10(4)) transduced with vIL-10 formed palpable tumors and eventually killed 80% of injected animals. Suppression of tumor rejection was also noted when CL8-1 tumors with or without vIL-10 transfection were admixed with syngeneic vIL-10-transfected fibroblasts and inoculated. Since the in vitro proliferation of the tumor was not altered after transduction with the vIL-10 gene and injection of vIL-10-transduced CL8-1 does not affect the rejection of nontransduced CL8-1 inoculated at a distant site, local vIL-10 secretion appears to suppress the process of immune rejection of the target cells in a dose-dependent manner. Similar results were observed for the H-2b MCA105 sarcoma tumor model in allogeneic BALB/c mice (H-2d). Although all animals that received nontransfected MCA105 rapidly rejected these tumors, MCA105 sarcomas transfected with vIL-10 remained palpable for up to 37 d. The local immunosuppressive effect of gene-delivered vIL-10 could be neutralized by anti-human IL-10 monoclonal antibody or could be reversed by the systemic administration of IL-2 or IL-12. In marked contrast, mIL-10 transfection of CL8-1 significantly suppressed tumor growth and frequently led to the rejection of tumor. Similar results were obtained for the murine tumor cell lines MCA102.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

20.
Although present in many copies in the mouse genome, xenotropic murine leukemia viruses cannot infect cells from laboratory mice because of the lack of a functional cell surface receptor required for virus entry. In contrast, cells from many nonmurine species, including human cells, are fully permissive. Using an expression library approach, we isolated a cDNA from HeLa cell RNA that conferred susceptibility to xenotropic envelope protein binding and virus infection when expressed in nonpermissive cells. The deduced product is a 696-aa multiple-membrane spanning molecule, is widely expressed in human tissues, and shares homology with nematode, fly, and plant proteins of unknown function as well as with the yeast SYG1 protein, which has been shown to interact with a G protein. This molecule also acts as a receptor for polytropic murine leukemia viruses, consistent with observed interference between xenotropic and polytropic viruses in some cell types. This xenotropic and polytropic retrovirus receptor (XPR1) is the fourth identified molecule having multiple membrane spanning domains among mammalian type C oncoretrovirus receptors and may play a role in G protein-coupled signal transduction, as do the chemokine receptors required for HIV entry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号