首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
废旧印刷电路板中非金属材料资源化的新进展   总被引:4,自引:1,他引:3  
蒋英  郭杰  许振明 《材料导报》2011,25(11):133-138
目前对废印刷电路板(WPCBs)的资源化利用主要集中在金属部分,而对于占整体约60%但处理困难且经济效益相对较低的非金属材料部分的资源化和安全处置的研究则相对较少。然而WPCBs中非金属材料具有较高的回收利用价值,完全可以作为再生资源回收。如何处理好当前存在的二次污染及回收利用率低等问题以及寻找高效、简便和绿色的回收利用方法已是非金属材料资源化所面临的当务之急。在非金属材料的资源化方法中,物理回收法以处理工艺简单、成本低、资源利用率相对较高等优点而具有较大的发展优势,是最符合国内实情的一种资源化方法。  相似文献   

2.
马峰  李晓彤  傅珍 《材料导报》2015,29(13):93-97
为充分利用道路行业以及建筑行业每年产生的大量废旧沥青材料,改善传统路面再生技术对旧料利用率低且对环境造成的不良影响,介绍了一种将生物粘合剂用于废旧沥青材料再生的方法。重点阐述了由猪粪热解得到的生物粘合剂对回收的废旧沥青材料和回收沥青瓦的改性再生方法,以及再生后材料的路用性能,指出存在的问题和未来进一步研究建议。现有研究表明,生物粘合剂加入到废旧沥青材料中能有效降低其粘度,改善其和易性,显著提高废旧沥青材料含量大的混合料的低温抗裂性和抵抗疲劳开裂性能,且其水稳定性和抗车辙性能均能满足规范要求,相比传统沥青路面旧料的再生利用方法具备优良的环境、经济和实施效益。将生物粘合剂用于废旧沥青材料再生行业具有广阔的发展前景,可以为在我国铺面工程中的研究应用提供参考。  相似文献   

3.
程有亮  张盈拴 《包装工程》2023,44(19):112-120
目的 为包装废聚对苯二甲酸乙二醇酯(PET)的回收和高值转化提供有效参考和依据。方法 通过梳理废PET来源,对比分析不同PET发泡工艺方法及其利弊,分析不同发泡剂的发泡效果,并研究PET的发泡改性途径,进而总结废PET发泡后的应用领域和发泡工艺的发展趋势。结果 近年来废PET发泡材料的研究已取得很大进展,但发泡材料的性能优化仍需进一步探究。结论 大量相关文献证明了利用包装废PET制备发泡材料的可行性,废PET发泡材料的研发符合循环发展的理念,这为废PET的回收和高值转化提供了更多的有效途径,具有广阔的发展前景。  相似文献   

4.
The printed circuit boards (PCBs) contain nearly 70% nonmetal materials, which usually are abandoned as an industrial solid-waste byproduct during the recycling of waste PCBs. However those materials have abundant high-value glass fibers. In this study, a novel fluidized bed process technology for recycling glass fibers from nonmetal materials of waste PCBs is studied. The recycled glass fibers (RGF) are analyzed by determination of their purity, morphology and surface chemical composition. This process technology is shown to be effective and robust in treating with nonmetal materials of waste PCBs. The thermoset resins in the nonmetal materials are decomposed in the temperature range from 400 °C to 600 °C. And the glass fibers are collected at high purity and recovery rate by the cyclone separators without violating the environmental regulation. This novel fluidized bed technology for recycling high-value glass fibers from nonmetal materials of waste PCBs represents a promising way for recycling resources and resolving the environmental pollutions during recycling of waste PCBs.  相似文献   

5.
金属材料表面自身纳米化研究进展   总被引:2,自引:0,他引:2  
近年来采用表面自身纳米化技术时纯金属、低碳钢及其他合金进行表面改性已得到广泛而深入的研究.相对于其他金属材料的表面改性技术,表面自身纳米化具有特定的技术优势.简要综述了金属材料表面自身纳米化技术的组织结构特征、组织演变机理、力学性能、元素扩散行为、腐蚀性能等.层错能的不同导致了不同表面纳米化形成机制,表面纳米晶的形成能有效改善原子的扩散行为,提高金属的硬度、强度、耐摩擦和疲劳性能.  相似文献   

6.
侯文贵  刘国成 《材料导报》2018,32(Z2):254-256
随着石油资源的日益紧张和环保问题的日益严重,我国越来越重视废润滑油回收再生和再利用。本文从传统酸洗工艺、溶剂精制、加氢精制三个方面讨论了废润滑油再生技术的研究进展和国内外废润滑油再生企业的技术特点,重点介绍了天津凯赛特科技有限公司开发的NMP(N-甲基吡咯烷酮)混合溶剂精制工艺,该工艺产品色度达到0.8,基础油收率可达80%以上,溶剂消耗0.5 kg/t废油,并且具有节能、环保等优点。  相似文献   

7.
近年来,我国城市化进程的推进和新农村建设的发展,不但使得国家能源负担日益加重,而且还随之产生了大量的建筑废弃物需进行处理,这些建筑废弃物已在城市固体垃圾中占有了一个相当大的比例,并且还在不断增长当中。对此,我国政府越来越重视节能和资源的回收利用问题,大力提倡和发展建筑废弃物的再利用。再生混凝土和再生砂浆作为新型的节约型建筑材料,对于保护环境、节约资源、发展生态建筑具有重要意义,近年来国内外学者开展了相关研究,并取得一定成果。本文通过分析再生混凝土、再生砂浆等主要再生建筑废弃物的力学性能及其破坏机理,以期为再生废弃物的进一步深入研究和应用提供更完善的科学依据。  相似文献   

8.
废阴极射线管(CRT)玻璃资源化技术的研究进展   总被引:1,自引:0,他引:1  
综述了国内外废阴极射线管玻璃资源化的研究现状,认为利用废阴极射线管玻璃制备建材、研制新型玻璃基材料具有工业化应用前景,湿法浸提-电沉积方法可成为有效的资源化技术。由于受技术和经济成本制约,目前多数研究仍停留在实验室阶段,环境友好、经济适宜和切实可行的资源化技术尚待开发。  相似文献   

9.
朱晓莹  潘峰 《中国材料进展》2011,30(10):1-13,48
新型功能材料及器件向小型化,集成化和复合化发展的趋势,使得尺寸在纳米尺度的层状材料和柔性多层器件在使用过程中的服役行为成为其发展的关键科学问题。本文结合作者近几年对Ag/M系列和Cu/M系列多层膜力学性能的研究工作,对金属纳米多层膜的微结构特征及其对力学性能的影响进行了回顾和总结,主要包括多层膜的晶粒形貌对其强化机制和塑性变形行为的影响,组元强度错配对多层膜硬化行为的影响,界面结构与其强度极值的关系、不对称界面结构引起的异常弹性模量增强和多层膜的室温蠕变机制及界面结构对蠕变性能的影响等几个方面,并对多层膜的力学性能研究进行了展望。  相似文献   

10.
Zr-based bulk metallic glasses (BMGs) are a new type of metallic materials with disordered atomic structure that exhibit high strength and high elastic strain, relatively low Young’s modulus, and excellent corrosion resistance and biocompatibility. The combination of these unique properties makes the Zr-based BMGs very promising for biomaterials applications. In this review article, the authors give an overview of the recent progress in the study of biocompatibility of Zr-based BMGs, especially the relevant work that has been done in the metallic glasses group in Huazhong University of Science and Technology (HUST), including the development of Ni-free Zr-based BMGs, the mechanical and wear properties, the bio-corrosion resistance, the in vitro and in vivo biocompatibility and the bioactive surface modification of these newly developed BMGs.  相似文献   

11.
Zr-based bulk metallic glasses (BMGs) are a new type of metallic materials with disordered atomic structure that exhibit high strength and high elastic strain, relatively low Young’s modulus, and excellent corrosion resistance and biocompatibility. The combination of these unique properties makes the Zr-based BMGs very promising for biomaterials applications. In this review article, the authors give an overview of the recent progress in the study of biocompatibility of Zr-based BMGs, especially the relevant work that has been done in the metallic glasses group in Huazhong University of Science and Technology (HUST), including the development of Ni-free Zr-based BMGs, the mechanical and wear properties, the bio-corrosion resistance, the in vitro and in vivo biocompatibility and the bioactive surface modification of these newly developed BMGs.  相似文献   

12.
随着社会经济及陶瓷行业的迅猛发展,建筑陶瓷废料日益增多,环境污染也日趋严重,因此陶瓷废料的再利用近年来成为人们关注的焦点。利用陶瓷废料生产建筑材料,既能使资源得到有效利用,又可以减少对环境的污染和破坏。综述了陶瓷废料的分类以及在建筑材料中的应用,重点讨论了利用陶瓷抛光废料制备建筑材料的最新制备工艺,最后展望了陶瓷废料的应用前景,并分析了在陶瓷废料的回收利用中亟待解决的问题。  相似文献   

13.
From the use of renewable resources and environmental protection viewpoints, recycling of waste printed circuit boards (PCBs) receives wide concerns as the amounts of scrap PCBs increases dramatically. However, treatment for waste PCBs is a challenge due to the fact that PCBs are diverse and complex in terms of materials and components makeup as well as the original equipment's manufacturing processes. Recycle technology for waste PCBs in China is still immature. Previous studies focused on metals recovery, but resource utilization for nonmetals and further separation of the mixed metals are relatively fewer. Therefore, it is urgent to develop a proper recycle technology for waste PCBs. In this paper, current status of waste PCBs treatment in China was introduced, and several recycle technologies were analyzed. Some advices against the existing problems during recycling process were presented. Based on circular economy concept in China and complete recycling and resource utilization for all materials, a new environmental-friendly integrated recycling process with no pollution and high efficiency for waste PCBs was provided and discussed in detail.  相似文献   

14.
The discovery of new materials is one of the driving forces to promote the development of modern society and technology innovation,the traditional materials research mainly depended on the trial-and-error method,which is time-consuming and laborious.Recently,machine learning (ML) methods have made great progress in the researches of materials science with the arrival of the big-data era,which gives a deep revolution in human society and advance science greatly.However,there exist few systematic generalization and summaries about the applications of ML methods in materials science.In this review,we first provide a brief account of the progress of researches on materials science with ML employed,the main ideas and basic procedures of this method are emphatically introduced.Then the algorithms of ML which were frequently used in the researches of materials science are classified and compared.Finally,the recent meaningful applications of ML in metal materials,battery materials,photovoltaic materials and metallic glass are reviewed.  相似文献   

15.
超临界水中废塑料的化学回收   总被引:6,自引:0,他引:6  
论述了近年来废塑料在超临界水作用下的化学回收过程。介绍了超临界水的特性以及用超临界水对废塑料(PE、PP、PS)进行热解和部分氧化的工艺,以回收单体、油和氧化。指出我国应大力加强对该领域的研究。  相似文献   

16.
A system tradeoff model for processing options for household plastic waste   总被引:1,自引:0,他引:1  
With the "Containers and Packaging Recycling Law", Japan has shown a firm conviction towards the promotion of recycling. Waste can be "recycled", i.e. resource value of waste material can be recovered, in many ways, from material recycling to energy recycling. Alternatively, waste can be reduced or disposed of in landfills. A system tradeoff model is developed from component process technology models of six different recycling and disposal options for household plastic waste processing: plastic pellet production, refuse derived fuel production, oil production, waste incineration to produce electricity, use of waste plastic as a coke substitute, and incineration for volume reduction. These technologies are compared with the case where all waste plastic is land filled. Models based on plant data, laboratory experiments, and theoretical considerations of scale effects and mass balances are developed to calculate the cost, energy consumption, CO2 emission, and land fill occupancy. The models also calculate the valued products of each technology and convert them into cost, energy, CO2, and landfill occupancy using life cycle inventory data. These values are subtracted from the outputs of the waste processing models to obtain overall performances for each technology. The overall tradeoff system model is then used to evaluate several scenarios of plastic recycling and disposal technologies in Tokyo. Electronic Publication  相似文献   

17.
Mechanical recycling of waste electric and electronic equipment: a review   总被引:65,自引:0,他引:65  
The production of electric and electronic equipment (EEE) is one of the fastest growing areas. This development has resulted in an increase of waste electric and electronic equipment (WEEE). In view of the environmental problems involved in the management of WEEE, many counties and organizations have drafted national legislation to improve the reuse, recycling and other forms of recovery of such wastes so as to reduce disposal. Recycling of WEEE is an important subject not only from the point of waste treatment but also from the recovery of valuable materials.WEEE is diverse and complex, in terms of materials and components makeup as well as the original equipment's manufacturing processes. Characterization of this waste stream is of paramount importance for developing a cost-effective and environmentally friendly recycling system. In this paper, the physical and particle properties of WEEE are presented. Selective disassembly, targeting on singling out hazardous and/or valuable components, is an indispensable process in the practice of recycling of WEEE. Disassembly process planning and innovation of disassembly facilities are most active research areas. Mechanical/physical processing, based on the characterization of WEEE, provides an alternative means of recovering valuable materials. Mechanical processes, such as screening, shape separation, magnetic separation, Eddy current separation, electrostatic separation, and jigging have been widely utilized in recycling industry. However, recycling of WEEE is only beginning.For maximum separation of materials, WEEE should be shredded to small, even fine particles, generally below 5 or 10mm. Therefore, a discussion of mechanical separation processes for fine particles is highlighted in this paper.Consumer electronic equipment (brown goods), such as television sets, video recorders, are most common. It is very costly to perform manual dismantling of those products, due to the fact that brown goods contain very low-grade precious metals and copper. It is expected that a mechanical recycling process will be developed for the upgrading of low metal content scraps.  相似文献   

18.
The consumption of waste materials is one of the essential concerns of waste management strategies in many parts of the world. With the advances in concrete technology, the utilisation of waste materials in the sustainable construction has developed increasingly widespread because of technological, economic and ecological advantages. This paper presents the workability and mechanical properties of concrete incorporating waste chopped metallic film (WCMF) fibres and palm oil fuel ash (POFA). Waste plastic results in waste discarding disaster and consequently causes significant harms to the environment. WCMF fibres were prepared by recycling metallic–plastic films used for food packaging. Six concrete mixes containing 0–1.25% WCMF fibres with a length of 20 mm were made of ordinary Portland cement (OPC). Further, six concrete mixes with the same fibre content were made, where 20% POFA substituted OPC. The combination of WCMF fibres and POFA decreased the workability of concrete mixes. The inclusion of WCMF fibres to OPC and POFA concrete mixes decreased the compressive strength. However, at the curing period of 91 days, the POFA-based mixes obtained higher compressive strength values than those of OPC-based mixtures. The positive interaction between WCMF fibres and POFA consequently enhanced the flexural and tensile strengths, impact resistance, thereby increasing energy absorption capacity and ductility of concrete composites. It revealed that WCMF fibres acted as a bridge arrester and improved the load-transfer capacity of the concrete specimens. The study showed that the utilisation of WCMF fibres in the production of sustainable concrete is a beneficial, affordable and feasible solution.  相似文献   

19.
杨伯军  赵凡  温迎强  苏明岳 《包装工程》2021,42(10):213-222
目的 为了解决工业产品领域包装用量大、浪费严重以及回收困难等问题,引入产品服务系统设计理念与技术进化理论.方法 针对产品包装现状,通过商业产品包装与工业产品包装的对比分析,得出工业产品包装改进设计的必要性与可行性.而产品服务系统设计的有效实施需要一定的理论与技术支撑,引入TRIZ技术进化理论作为产品服务系统的支撑工具,将可持续理念以实践方式应用于工业产品包装领域.结论 通过技术进化理论与PSS理念的结合应用,有效缓解了工业产品包装浪费严重、回收困难等问题,扩展了产品服务系统设计应用范畴,技术进化理论的应用也为PSS带来了新的发展方向.最后,以信息通讯设备企业包装为例,对产品服务系统与技术进化理论结合应用进行了验证.  相似文献   

20.
PVC removal from mixed plastics by triboelectrostatic separation   总被引:1,自引:0,他引:1  
Ever increasing oil price and the constant growth in generation of waste plastics stimulate a research on material separation for recycling of waste plastics. At present, most waste plastics cause serious environmental problems due to the disposal by reclamation and incineration. Particularly, polyvinyl chloride (PVC) materials among waste plastics generates hazardous HCl gas, dioxins containing Cl, and so on, which lead to air pollution and shorten the life of incinerator, and it makes difficultly recycling of other plastics. Therefore, we designed a bench scale triboelectrostatic separator for PVC removal from mixed plastics (polyvinyl chloride/polyethylene terephthalate), and then carried out material separation tests. In triboelectrostatic separation, PVC and PET particles are charged negatively and positively, respectively, due to the difference of the work function of plastics in tribo charger of the fluidized-bed, and are separated by means of splitter through an opposite electric field. In this study, the charge efficiency of PVC and PET was strongly dependent on the tribo charger material (polypropylene), relative humidity (below 30%), air velocity (over 10 m/s), and mixture ratio (PET:PVC=1:1). At the optimum conditions (electrode potential of 20 kV and splitter position of -2 cm), PVC rejection and PET recovery in PET products were 99.60 and 98.10%, respectively, and the reproducibility of optimal test was very good (+/-1%). In addition, as a change of splitter position, we developed the technique to recover high purity PET (over 99.99%) although PET recovery decreases by degrees.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号