首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Among the catalysts screened, Cu-ion exchanged ZSM5 zeolite exhibited the highest NO removal activity, particularly at low reaction temperatures below 200 °C, maintaining a wide operating temperature window. The hydrothermal stability of the CuZSM5 catalyst can be improved by the optimization of metal content of the catalyst. Through the variation of reactor operating conditions, NO conversion of better than 90% could be achieved with a minimum NH3 slip. The decomposition of urea was also examined and a kinetic model for both thermal and catalytic decomposition of urea was developed. Urea-SCR over the CuZSM5 catalyst exhibited that the NO removal activity is competitive to that by NH3-SCR, indicating urea can be effectively utilized in SCR reactor system as the reducing agent.  相似文献   

2.
A kinetic study of the NO decomposition over V–O–W/Ti(Sn)O2 catalyst carried out in a tubular fixed-bed reactor operating under atmospheric pressure at different temperatures and at various space times is presented. Assuming that NO decomposition occurs as a result of electron transfer from the metal active site to antibonding π NO orbital, several kinetic models were derived and applied to describe the kinetics of reaction. The best agreement between the experimental data and theoretical prediction was achieved with the model assuming adsorption of NO on the active sites as the rate-determining step. Finally, it was concluded that V–O–W/Ti(Sn)O2 catalyst has promising activity for the NO removal in O2 presence from the effluent gases of the different sources of emission.  相似文献   

3.
Modelling of the phenomena involved during the adsorption of NOx on NOx trap catalysts was developed. The aim of the model is the prediction of the quantity of stocked barium nitrate as well as the emissions of NO and NO2, as a function of time and temperature. The mechanism of the process is sounded on the adsorption of gas species (NO, NO2, O2) on platinum sites, equilibrium reaction between adsorbed species followed by the formation of Ba(NO3)2. This formation of barium nitrate is limited by the thermal decomposition reaction which liberates NO in the gas phase. The kinetic constant of decomposition of barium nitrate was determined by temperature programmed thermogravimetry on pure Ba(NO3)2, using the method of Freeman and Carroll. Other kinetic constants bound to the mechanism were estimated by fitting the results of the model to experimental results.The mechanism was validated for various values of the molar fraction of O2, the molar fraction of NO and various values of the NO/NO2 ratio in the gas entering the reactor. It was also tested with different catalyst compositions (variation of the platinum and BaO concentrations). The importance of oxygen in the process was clearly demonstrated as well as the promoting role of NO2.  相似文献   

4.
5.
A systematic study over Pt/Al2O3 powder and monolith catalysts is carried out using temporal analysis of products (TAP) to elucidate the transient kinetics of NO decomposition and NO reduction with H2. NO pulsing and NO–H2 pump-probe experiments demonstrate the effect of catalyst temperature, NO–H2 pulse delay time and H2/NO ratio on N2, N2O and NH3 selectivity. At lower temperature (150 °C) decomposition of NO is negligible in the absence of H2, indicating that N–O bond scission is rate limiting. At higher temperature NO decomposition occurs readily on reduced Pt but the rate is inhibited by surface oxygen as reaction occurs. The reduction of NO by a limiting amount of H2 at lower temperature indicates the reaction of surface NO with H adatoms to form N adatoms, which react with adsorbed NO to form N2O or recombine to form N2. In excess H2, higher temperatures and longer delay times favor the production of N2. The longer delay enables NO decomposition on reduced Pt with the role of H2 being a scavenger of surface oxygen. Lower temperatures and shorter delay times are favorable for ammonia production. The sensitive dependence on delay time indicates that the fate of adsorbed NO depends on the concentration of vacant sites for NO bond scission, necessary for N2 formation, and of surface hydrogen, necessary for hydrogenation to ammonia. A mechanistic-based microkinetic model is proposed that accounts for the experimental observations. The TAP experiments with the monolith catalyst show an improved signal due to the reduction of transport restrictions caused by the powder. The improved signal holds promise for quantitative TAP studies for kinetic parameters estimation and model discrimination.  相似文献   

6.
In this paper a global reaction kinetic model is used to understand and describe the NOx storage/reduction process in the presence of CO2 and H2O. Experiments have been performed in a packed bed reactor with a Pt–Ba/γ-Al2O3 powder catalyst (1 wt% Pt and 30 wt% Ba) with different lean/rich cycle timings at different temperatures (200, 250, and ) and using different reductants (H2, CO, and C2H4). Model simulations and experimental results are compared. H2O inhibits the NO oxidation capability of the catalyst and no NO2 formation is observed. The rate of NO storage increases with temperature. The reduction of stored NO with H2 is complete for all investigated temperatures. At temperatures above , the water gas shift (WGS) reaction takes place and H2 acts as reductant instead of CO. At , CO and C2H4 are not able to completely regenerate the catalyst. At the higher temperatures, C2H4 is capable of reducing all the stored NO, although C2H4 poisons the Pt sites by carbon decomposition at . The model adequately describes the NO breakthrough profile during 100 min lean exposure as well as the subsequent release and reduction of the stored NO. Further, the model is capable of simulating transient reactor experiments with 240 s lean and 60 s rich cycle timings.  相似文献   

7.
UV/H2O2氧化联合CaO吸收脱除NO的传质-反应动力学   总被引:3,自引:0,他引:3  
刘杨先  潘剑锋  刘勇 《化工学报》2013,64(3):1062-1068
在实验室规模的光化学反应器中,基于实验研究﹑动力学理论以及双膜理论,研究了UV/H2O2氧化联合CaO吸收(UV/H2O2-CaO工艺)脱除燃煤烟气中NO的传质-反应动力学。分析了NO吸收的传质-反应过程,明确了NO吸收过程的主要控制步骤和强化措施,测定了关键的动力学参数,推导了NO吸收过程的理论模型。结果表明:在实验范围内,NO吸收速率随着NO浓度的增加几乎呈线性增加。随着H2O2浓度和CaO浓度的增加,NO的吸收速率均呈现先增加后变缓的趋势。UV/H2O2-CaO工艺脱除NO是一个拟一级快速反应过程,强化气相主体扰动﹑增加气液接触面积和提高NO分压可有效提高NO的吸收速率。NO吸收速率方程的计算值和实验值具有较好的一致性。  相似文献   

8.
2,4-Dichlorophenol (2,4-DCP), as a halogenated model pollutant, was decomposed by using supercritical water oxidation (SCWO) in a batch reactor made of Hastelloy C-276. SCWO experiments for 2,4-DCP decomposition were performed in the range of 380–420 °C, 230–280 bar and 0.074-0.221 mol/L H2O2. The effect of oxidant concentration on decomposition rate and efficiency was significant near the critical temperature of 380 °C. However, the role of the oxidant concentration in the SCWO process decreased with an increase in temperature; also, excess oxidant played a key role in quite significantly decreasing the activation energy of 2,4-DCP oxidation. Variation of the reaction rate by the change of pressure was negligible even at a near critical temperature. The kinetic rate for the decomposition of 2,4-DCP in the SCWO process was well described by a simple first-order kinetic and global reaction rate model. From the SCWO experiments, the various intermediates identified with a GC/MS implied that the first reaction pathway for 2,4-DCP decomposition led to dimers such as dichlorophenoxyphenols, and the second led to single-ring and ring-opening products.  相似文献   

9.
10.
Ammonia present in the product gas from coal gasification may increase NOx emissions from IGCC systems. A fixed bed reactor was used to study the effect of calcined limestone (CaO) on NH3 decomposition and reaction of NH3 and NO. Reactions at temperatures to 900°C in helium and in gas compositions typical of air-blown gasifiers were studied. Although CaO enhanced ammonia decomposition in helium, reaction in the gasification atmosphere resulted in the loss of this catalytic activity. Increasing the total pressure further reduced the rate of NH3 decomposition. CaO enhanced conversion of NO to NH3 in gasification atmospheres.  相似文献   

11.
The most of new technologies of reduction of NOx emission, as literature survey (Skalska et al., 2010b) suggests is focused on NOx emission control from power plants and mobile vehicles. Fewer investigations are conducted on the NOx emission abatement from chemical industry. Recently, Chacuk et al. (2007) proposed the model for the nitrous acid oxidation with the use of ozone in gas–liquid contactor. It is well known that not all of NOx can be totally absorbed in water or nitrous/nitric acid solution, as well as ozone is not totally consumed in the acidic liquid. The reaction between ozone and NOx can take place also in the gas phase. The ozone injection into exhaust gas stream followed by absorption was proposed as the NOx emission abatement. The objective of these studies was to propose kinetic model of the process and to determine the rate constants of NOx ozonation in the laboratory scale batch reactor. The process was carried out in the 0.5 dm3 volume batch reactor for different concentrations of NO, and NO2 and varying molar ratios of O3/NO at temperature 25 °C. Gaseous reagents were analyzed using a Fourier Transform Infrared Spectrometer Jasco FTIR-4200. The kinetic model of NOx ozonation process was proposed and rate constants were estimated based on experimental data.  相似文献   

12.
The kinetics of N2O decomposition to gaseous nitrogen and oxygen over HZSM-5 catalysts with low content of iron (<400 ppm) under transient and steady-state conditions was investigated in the temperature range of 250–380 °C. The catalysts were prepared from the HZSM-5 with Fe in the framework upon steaming at 550 °C followed by thermal activation in He at 1050 °C. The N2O decomposition began at 280 °C. The reaction kinetics was first order towards N2O during the transient period, and of zero order under steady-state conditions. The increase of the reaction rate with time (autocatalytic behaviour) was observed up to the steady state. This increase was assigned to the catalysis by adsorbed NO formed slowly on the zeolite surface from N2O. The formation of NO was confirmed by temperature-programmed desorption at temperatures >360 °C. The amount of surface NO during the transient increases with the reaction temperature, the reaction time, and the N2O concentration in the gas phase up to a maximum value. The maximum amount of surface NO was found to be independent on the temperature and N2O concentration in the gas phase. This leads to a first-order N2O decomposition during the transient period, and to a zero-order under steady state. A kinetic model is proposed for the autocatalytic reaction. The simulated concentration–time profiles were consistent with the experimental data under transient as well as under steady-state conditions giving a proof for the kinetic model suggested in this study.  相似文献   

13.
There has been an increasing recent research interest in the removal of NOx from combustion gases using electrical discharges, especially pulsed corona discharge reactors. The major issues in development of this technology are (a) the energy consumption required to achieve the desired pollutant reduction; and (b) the formation of undesirable byproducts. In this study, the transformations and destruction of nitrogen oxides—NO, NO2 and N2O—were investigated in a pulsed corona discharge reactor. Gas mixtures—NO in N2, N2O in N2, NO2 in N2 and NO-N2O-NO2 in N2—were allowed to flow through the reactor with initial concentrations, flow rates and energy input as operating variables. The reactor effluent gas stream was analyzed for N2O, NO, NO2, by means of an FTIR spectrometer. In some experiments, oxygen was measured using a gas chromatograph.Reaction mechanisms were proposed for the transformations and destruction of the different nitrogen oxides within a unified model structure. The corresponding reaction rates were integrated into a simple reactor model for the pulsed corona discharge reactor. The reactor model brings forth the coupling between reaction rates, electrical discharge parameters, and fluid flow within the reactor. It was recognized that the electron-impact dissociation of the background gas N2 leads to both ionic and radical product species. In fact, ionic reactions were found responsible for N2O destruction. Radical reactions were dominant in the transformation and destruction of NO and NO2. However, decomposition of N2+ ions also leads to indirect production of N radicals; this appears to be a less-power intensive route for NO destruction though longer residence times may be necessary. In addition, the decomposition of N2+ ions limits the N2O destruction that can be achieved. Comparison with our experimental data, as well as data in the literature, was very encouraging.  相似文献   

14.
The homogeneous phosphotungstic acid catalyzed N-oxidation of alkylpyridines by hydrogen peroxide has important applications in pharmaceutical and fine chemical industries. Current industry practice is to employ a semibatch reactor with gradual dosing of hydrogen peroxide into an alkylpyridine/catalyst solution under isothermal conditions. However, due to lack of understanding of reaction mechanism and thermodynamic behavior, this system is subject to significant risk of flammability, fires and explosions due to hydrogen peroxide decomposition. In this study, we conducted semibatch N-oxidation process in an isothermal reaction calorimeter (RC1) over a wide range of temperature, catalyst amount and oxidizer dosing rates. Reactor pressure, reaction heat generation rate and in situ FTIR spectra of liquid phase species were recorded in real-time during experiments, and final product was quantified using HPLC and GC–MS analytical tools. We developed an integrated thermodynamic and kinetics model of homogeneous N-oxidation reaction based on experimental results and past literature findings. More specifically, Wilson excess Gibbs model was employed to estimate activity coefficients of highly nonideal liquid mixture. We found ideal gas law was satisfactory in calculating incondensable oxygen pressure. First principle reaction mechanism and kinetics parameters of (a) catalytic N-oxidation reaction; (b) catalytic hydrogen peroxide decomposition reaction; (c) noncatalytic N-oxidation reaction; (d) noncatalytic hydrogen peroxide decomposition reaction was derived based on experimental findings of this study and past literature. The proposed integrated thermodynamic model and kinetics model successfully predicted highly nonlinear reactor pressure, species concentration and reaction enthalpy generation rate profile of homogenous catalytic N-oxidation and H2O2 decomposition reaction. The optimal reactions conditions with maximum N-oxide product yield and minimum reactor pressure and catalyst usage was theoretically identified and further verified by experiments. The obtained model can be used for inherently safer reactor design and applied to other homogeneous tungstic acid catalytic hydrogen peroxide oxidation processes.  相似文献   

15.
Fast pyrolysis of polymers, biomass and other substances is of great interest in various applications. For example, in the lost foam casting process, kinetic information about expandable polystyrene (EPS) decomposition under extremely high‐heating rate conditions is essential for further process development. A simple laboratory‐scale fast pyrolysis technique has been developed and demonstrated for elucidation of EPS decomposition kinetics. Pyrolysis experiments were performed at different reaction temperatures. The cumulative gaseous yields were determined using a flame ionization detector (FID) connected in series with the fast pyrolysis reactor. The governing equations for a semibatch reactor type were modified and applied to obtain kinetic parameters (activation energies and the pre‐exponential rate constants) for the EPS decomposition process. © 2009 American Institute of Chemical Engineers AIChE J, 2010  相似文献   

16.
A multiphase CFD-based model with gas-solid hydrodynamics and chemical reactions is used to model flow behavior of gas and particles in the fuel reactor of chemical looping combustion process. The granular kinetic theory model is used to model the interaction of particle collisions. The friction stress of particles is considered to account for strain rate fluctuations and slow relaxation of the assembly to the yield surface. The reaction kinetics model of the fuel reactor is presented. The instantaneous mass fractions of both reactant and products are predicted, and the time averaged distributions are calculated in the fuel reactor. Simulated fuel reactor flows reveal a high weight fraction of unburned methane fuel in the flue gas along with CO2 and H2O. This behavior implies high fuel loss at the exit of the reactor and indicates the necessity to increase the residence time and improve mixing in the fuel reactor using circulating fluidized bed technology.  相似文献   

17.
The reduction of nitric oxide by reaction with non-hydrocarbon fuels under reducing conditions at comparatively higher temperature has been studied with a detailed chemical kinetic model. The reaction mechanism consists of 337 elementary reactions between 65 chemical species based on the newest rate coefficients. The experimental data were adopted from previous work. Analyses by comparing existing experimental data with the modeling predictions of this kinetic mechanism indicate that, at comparatively high temperature, apart from the reaction path NO→HNO→NH→N2, NO+N→N2 is also prominent. In the presence of CO, NO is partly converted to N by reaction with CO. Based on present model, the reduction of NO at high temperature, which was usually underestimated by previous work, can be improved to some extent. This work was presented at the 7 th China-Korea Workshop on Clean Energy Technology held at Taiyuan, Shanxi, China, June 26–28, 2008.  相似文献   

18.
The reaction kinetics of the oxidative dehydrogenation of propane to propene over a V/MgO catalyst were studied. Both propane and propene oxidation kinetics were measured independently to quantify the rates of the parallel and consecutive reactions to propene and carbon oxides. Specific experiments to evaluate reaction products effects showed that water inhibited reaction rates but co‐feeding CO2 or propene had no measurable effect on selectivity or conversion. Kinetic data generated under integral reactor conditions and over an inert membrane reactor have also been used to estimate the kinetic parameters. Selectivity decreased as the oxygen partial pressure increased; however, propene yield was relatively insensitive to oxygen concentration. A dual site Mars‐van Krevelen model characterizes the reaction kinetics well. The role of lattice oxygen was established by alternating pulses of propane and oxygen. This redox model is able to predict the experimental tendencies observed in the three types of reactor studied.  相似文献   

19.
A comprehensive kinetic model for oxidative coupling of methane (OCM) on Mn/Na2WO4/SiO2 catalyst was developed based on a microcatalytic reactor data. The methane conversion and ethylene, ethane, carbon monoxide and carbon dioxide selectivities were obtained in a wide range of operating conditions including 750 < < 875 °C, 4 < CH4/O2 < 7.5 and space time between 30 and 160 kg · s/m3 at = 657 mmHg. The reaction networks of five kinetic models with appropriate rate equation type were compared together. The kinetics rates parameters of each reaction network were estimated using genetic algorithm optimization method. After comparing the reaction networks, the reaction network presented by Stansch et al. was found to best represent the OCM reaction network and was further used in this work. This kinetic network considers both catalytic and gas-phase as well as primary and consecutive reaction steps to predict the performance of the OCM. Comparing the experimental and predicted data showed that presented model has a reasonable fit between the experimental data and the predicted values with average absolute relative deviation of ± 9.1%.  相似文献   

20.
The removal of N2O by a pulsed corona reactor (PCR) was investigated. Gas mixtures containing N2O were allowed to flow in the reactor at various levels of energy input, and for different background gases, flow rates, and initial pollutant concentrations. The reactor effluent gas stream was analyzed for N2O, NO, NO2, by means of an FTIR spectrometer. It was found that destruction of N2O was facilitated with argon as the background gas; the conversion dropped and power requirements increased when nitrogen was used as the background gas.Reaction mechanisms are proposed for the destruction of N2O in dry argon and nitrogen. Application of the pseudo-steady state hypothesis permits development of expressions for the overall reaction rate in these systems. These reaction rates are integrated into a simple reactor model for the pulsed corona discharge reactor. The reactor model brings forth the coupling between reaction rates, electrical discharge parameters, and fluid flow within the reactor. Comparison with experiment is encouraging, though the needs for additional research are clearly identified.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号