首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
TiO2 powder with 50% by volume or more of brookite phase was obtained by heating aqueous TiCl4 solution, whose final concentration of HCl after reaction was kept between 4.9 and 6.4 M, at 80 °C for 15 h. Rutile-type TiO2 was obtained at 5 h of reaction time, a mixture of predominant brookite and rutile at 10–15 h while rutile phase was formed at 25 h. Brookite phase was transformed directly to rutile phase with increase of reaction time but to rutile via anatase phase through heat treatment.  相似文献   

2.
Nanosized titanium dioxide photocatalysts with varying amount of anatase and rutile phases have been synthesized. Homogeneous precipitation of aqueous solutions containing TiOSO4 with urea was used to prepare porous spherical clusters of anatase TiO2. Photoactive titania powders with variable amount of anatase and rutile phases were prepared by heating of pure anatase in the temperatutre range 800–1150 °C. The structure evolution during heating of the starting anatase powders was studied by XRD analysis in overall temperature range of phase transformation. The morphology and microstucture characteristics were also obtained by HRTEM, BET and BJH. The spherical particle morphology of TiO2 mixtures determined by SEM was stable in air up to 900 °C. The photocatalytic activity of the sample titania TIT85/825 heated to 825 °C in air, contained 77.4% anatase and 22.6% rutile was higher than that nanocrystalline anatase powder. Titania sample TIT85/825 reveals the highest catalytic activity during the photocatalyzed degradation of 4-chlorophenol in aqueous suspension.  相似文献   

3.
Ag–TiO2 multiphase nanocomposite thin films were prepared on quartz substrates by the liquid phase deposition (LPD) method from a mixed aqueous solution of ammonium hexafluouotitanate, silver nitrate and boric acid under ambient temperature and atmosphere followed by calcination at 500 °C for 1 h. The grain growth of anatase was depressed upon Ag+ doping. However, silver ions not only promoted (or catalyzed) the formation of brookite phase but also reduced the phase transformation temperature of anatase to rutile. With increasing AgNO3 concentration, the transmittance and band gap of the composite thin films decreased; however, the intensity of surface plasmon absorption (SPA) peaks increased and their peak position shifted to a longer wavelength range. When AgNO3 concentration was higher than 0.03 M, the prepared samples consisted of anatase, brookite, rutile and metal silver nanocrystal particles, and their grain size ranges were 5–30 nm. The photocatalytic activity of the Ag–TiO2 multiphase nanocrystal composite thin films prepared by this method exceeded that of pure TiO2 thin films by a factor of more than 6.3 when AgNO3 concentration was kept in the range of 0.03–0.05. This was attributed to the fact that there were many hetero-junctions, such as anatase/rutile, anatase/brookite, Ag/anatase, Ag/rutile and so on, existed in the Ag–TiO2 multiphase nanocomposite films.  相似文献   

4.
Two types of TiO2 samples, ST-01 (Ishihara-Sangyo, Japan) and A11 precursor (Police, Poland), were heat-treated at 400–1000 °C and characterized by the phase composition, crystallite size and lattice strain. These TiO2 samples were tested for methylene blue (MB) decomposition and OH radical formation. Through heating TiO2 up to 700 °C for 1 h the single anatase phase was remained, which had improved crystallinity, large crystallite size and very small lattice strain. By extending the calcination time up to 2–5 h, the anatase phase partially transformed to rutile phase, much faster by A11 precursor than by ST-01. Transformation of anatase phase to rutile reduced the rate of methylene blue decomposition, although OH radical formation was the highest in the samples having around 9 mass% of rutile. However, methylene blue decomposition not only depended on OH radical formation on TiO2 particles, but also the content of even small amount of rutile in TiO2 reduces markedly the rate of methylene blue decomposition.  相似文献   

5.
以钛酸四丁酯为前驱体,硅藻土为载体,采用溶胶-凝胶法制备TiO_2/硅藻土负载型光催化剂。以硝酸镧为镧源,采用等体积浸渍-焙烧法制备La~(3+)/TiO_2硅藻土光催化剂。通过XRD和SEM对制备的催化剂进行表征,以亚甲基蓝溶液模拟有机废水,考察n(Ti)∶n(Si)及La3+掺杂量对催化剂光催化性能的影响,结果表明,硅藻土可提高TiO_2分散性,降低TiO_2晶粒尺寸,并抑制其由锐钛矿相向金红石相的转变。在n(Ti)∶n(Si)=1∶1、焙烧温度550℃和La3+掺杂质量分数1%条件下,La~(3+)/TiO_2硅藻土光催化剂的光催化活性较好,紫外光连续照射180 min,亚甲基蓝降解率可达99.9%。  相似文献   

6.
In the preparation of 1% Au/TiO2 catalysts supported on either Degussa P-25 or anatase (90 m2 g−1) by deposition–precipitation, the gold content passes through a maximum at about the isoelectric point (pH 6), but maximum specific rates occur at pH 8–9 because the Au particle size becomes smaller as the pH is further increased. The gold uptake increases with the surface area of the support (anatase, rutile, P-25) and is complete above 200 m2 g−1; adsorption of the gold precursor at pH 9 is shown to be equilibrium-limited. Highest activities are found with supports of 50 m2 g−1. Catalysts made with high-area anatase (240 or 305 m2 g−1) are least active but show least deactivation.With Au/SnO2 catalysts, gold uptake does not depend on the area of the support, and is highest at pH 7–8; very active catalysts (T50 = 230–238 K) are obtained using SnO2 of 47 m2 g−1. Storing a catalyst at 258 K for 1 week dramatically improves its stability. Results for Au/CeO2 and Au/ZrO2 catalysts confirm that moderate support areas give the most active catalysts, and suggest that surface area is often more important than chemical composition.  相似文献   

7.
We have found that the use of sulfuric acid in the peptization process of sol–gel method produced SO42−-incorporated TiO2 which is mechanically strong by firing at low temperature such as 200°C. The synthesized TiO2 has larger specific surface area and retards the phase transition from anatase to rutile compared with that prepared from the peptization with nitric acid. The S-content of the TiO2 fired at 200°C was 1.52 wt.%; the value has a maximum of 2.74 wt.% at 400°C. The XPS measurements indicate that S exists mainly as SO42−. The TiO2 fired at 400°C showed the highest photocatalytic activity for ethylene degradation. Especially, we would like to emphasize the TiO2 sintered at 200°C because they are extremely hard in spite of such a low sintering temperature. This photocatalyst may provide a great opportunity for extensive applications as self-supporting membranes.  相似文献   

8.
Nanosized pure TiO2 particles were prepared by hydrolysis of TTIP in the sodium bis(2-ethylhexyl)sulfosuccinate (AOT) reverse micelles. TiO2/SiO2 nanoparticles were also prepared from TEOS as a silicon source and TTIP as a titanium source. These particles were characterized by TEM, XRD, FT-IR, BET, TGA and DTA. From thermal analysis and XRD analysis, the anatase structure of pure titania appeared in the 300–600 °C calcination temperature range and the rutile structure was showed above 700 °C. However, no rutile phase was observed for the TiO2/SiO2 particles up to 800 °C. The crystallite size decreased and the surface area of TiO2/SiO2 particles monotonically increased with an increase of the silica content. From FT-IR analysis, the band for Ti–O–Si vibration was observed and the band intensity for Si–O–Si vibration increased with an increase of the silica content. The micrographs of TEM showed that the TiO2/SiO2 nanoparticles had a spherical and a narrow size distribution. In addition, TiO2/SiO2 particles showed higher photocatalytic activity than pure TiO2 and the TiO2/SiO2 (90/10) particles showed the highest activity on the photocatalytic decomposition of p-nitrophenol.  相似文献   

9.
The photocatalytic behavior of different TiO2-based photocatalysts was reported for gas-phase toluene removal under both UV and visible light illumination, and compared to that of commercial P25 (Degussa) TiO2. Promotion by sulfates and the use of nanosized anatase TiO2 were reported to strongly increase the toluene removal efficiency under UV illumination. Nanosized-anatase was prepared by a protecting group sol–gel synthesis using hexamethyldisilazane as crystallite growth inhibitor. Sulfates played a double positive role, with photogenerated electrons transfer effects limiting charge recombination and as repulsive species for strongly adsorbed aromatic intermediates that act as poisons. The decrease in particle size obtained on nanosized anatase TiO2 (5 nm) yielded a considerable enhancement in the toluene removal efficiency. Pure high surface area rutile has been synthesized at low temperature by a polyethylenglycol-containing sol–gel method for visible light activation purposes. A two-way semiconductor coupling phenomenon, consisting of a reciprocal electron/hole transfer between two visible light-activated oxides, rutile TiO2 and WO3, was proposed to explain the large gain in efficiency when adding low amounts of WO3 to rutile TiO2.  相似文献   

10.
Ti3+-doped TiO2 nanosheets with tunable phase composition (doped TiO2 (A/R)) were synthesized via a hydrothermal method with high surface area anatase TiO2 nanosheets TiO2 (A) as a substrate, structure directing agent, and inhibitor; the activity was evaluated using a probe reaction-photocatalytic CO2 conversion to methane under visible light irradiation with H2 as an electron donor and hydrogen source. High-resolution transmission electron microscope (HRTEM), field emission scanning electron microscope, UV-Vis diffuse reflectance spectra, and X-ray diffraction (XRD) etc., were used to characterize the photocatalysts. XRD and HRTEM measurements confirmed the existence of anatase-rutile phase junction, while Ti3+ and single-electron-trapped oxygen vacancy in the doped TiO2 (A/R) photocatalyst were revealed byelectron paramagnetic resonance (EPR) measurements. Effects of hydrothermal synthesis temperature and the amount of added anatase TiO2 on the photocatalytic activity were elucidated. Significantly enhanced photocatalytic activity of doped TiO2 (A/R) was observed; under the optimized synthesis conditions, CH4 generation rate of doped TiO2 (A/R) was 2.3 times that of Ti3+-doped rutile TiO2.  相似文献   

11.
Bimodal nanocrystalline mesoporous TiO2 powders with high photocatalytic activity were prepared by a hydrothermal method using tetrabutylorthotitanate (TiO(C4H9)4, TBOT) as precursor. The as-prepared TiO2 powders were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS) and N2 adsorption–desorption measurements. The photocatalytic activity of the as-prepared TiO2 powders was evaluated by the photocatalytic degradation of acetone (CH3COCH3) under UV-light irradiation at room temperature in air. The effects of hydrothermal temperature and time on the microstructures and photocatalytic activity of the TiO2 powders were investigated and discussed. It was found that hydrothermal treatment enhanced the phase transformation of the TiO2 powders from amorphous to anatase and crystallization of anatase. All TiO2 powders after hydrothermal treatment showed bimodal pore-size distributions in the mesoporous region: one was intra-aggregated pores with maximum pore diameters of ca. 4–8 nm and the other with inter-aggregated pores with maximum pore diameters of ca. 45–50 nm. With increasing hydrothermal temperature and time, the average crystallite size and average pore size increased, in contrast, the Brunauer-Emmett-Teller (BET) specific surface areas, pore volumes and porosity steadily decreased. An optimal hydrothermal condition (180 °C for 10 h) was determined. The photocatalytic activity of the prepared TiO2 powders under optimal hydrothermal conditions was more than three times higher than that of Degussa P25.  相似文献   

12.
Changbin Zhang  Hong He   《Catalysis Today》2007,126(3-4):345-350
The TiO2 supported noble metal (Au, Rh, Pd and Pt) catalysts were prepared by impregnation method and characterized by means of X-ray diffraction (XRD) and BET. These catalysts were tested for the catalytic oxidation of formaldehyde (HCHO). It was found that the order of activity was Pt/TiO2  Rh/TiO2 > Pd/TiO2 > Au/TiO2  TiO2. HCHO could be completely oxidized into CO2 and H2O over Pt/TiO2 in a gas hourly space velocity (GHSV) of 50,000 h−1 even at room temperature. In contrast, the other catalysts were much less effective for HCHO oxidation at the same reaction conditions. HCHO conversion to CO2 was only 20% over the Rh/TiO2 at 20 °C. The Pd/TiO2 and Au/TiO2 showed no activities for HCHO oxidation at 20 °C. The different activities of the noble metals for HCHO oxidation were studied with respect to the behavior of adsorbed species on the catalysts surface at room temperature using in situ DRIFTS. The results show that the activities of the TiO2 supported Pt, Rh, Pd and Au catalysts for HCHO oxidation are closely related to their capacities for the formation of formate species and the formate decomposition into CO species. Based on in situ DRIFTS studies, a simplified reaction scheme of HCHO oxidation was also proposed.  相似文献   

13.
甄文媛  李青 《化工学报》2018,69(5):2290-2298
以凹凸棒为载体,四氯化钛为钛源,通过溶胶-凝胶法结合超临界干燥法制备TiO2/凹凸棒复合光催化材料。采用XRD、SEM、TEM、BET、XPS等方法对材料的结构、形貌及催化性能进行表征。研究结果表明:超临界干燥可增大复合材料的比表面积,抑制TiO2发生晶型转变。凹凸棒吸附特性良好,增加了材料表面的活性位点,显著提高催化剂的光催化活性。不同煅烧温度下的TiO2均为锐钛矿型,粒径约为20 nm,呈不规则短棒状,成功负载于凹凸棒上。在400℃煅烧2 h条件下,催化剂3 h后对亚甲基蓝的降解率可达98.4%。  相似文献   

14.
The new photocatalysts based on commercially available titanium dioxide powders: Tytanpol A11 (Police, Poland), pure anatase and P-25 (Degussa, Germany) containing about 20% rutile were modified by carbon via ethanol carbonisation. Titanium dioxides were heated at different temperature from 150 to 400 °C for 1 h in an atmosphere of ethanol vapour. The photocatalytic activity of carbon-modified TiO2 was studied by oxidation of phenol in water under UV and artificial solar light irradiation. With increasing of carbon content in TiO2 photocatalysts the activity for phenol decomposition under UV light was decreasing but that under visible light was stable. Turbidity of the slurry solution decreased with increasing of carbon content for all prepared photocatalysts because of the change of their surface character from hydrophilic to hydrophobic.  相似文献   

15.
Binary vanadia–titania catalysts comprising 5–75 wt.% of V2O5 and 95–25 wt.% of TiO2, pretreated at the temperature ranging between 300 and 700°C, were studied as heterogeneous catalysts for oxidation of β-picoline at 250°C, and inlet concentrations of the following components (vol.%): 1% of 3-picoline, 20% of oxygen, 30% of steam. Nicotinic acid, 3-pyridinecarbaldehyde and CO2 were the reaction products. The most active state for oxidation of 3-picoline into nicotinic acid was shown to result from formation of coherent interface between V2O5 and TiO2 (anatase) crystallites. This state was generated at the temperature particular for each composition and persists below the temperature of the anatase to rutile transition.  相似文献   

16.
Activities of a series of metals (Pt, Pd, Rh, Cu, Mn) supported on TiO2 were investigated for the catalytic oxidation of formaldehyde. Among them, Pt/TiO2 was found to be the most promising catalyst. Nitrogen adsorption, hydrogen chemisorption, X-ray diffraction (XRD), transmission electron microscopy (TEM) and temperature programmed reduction (TPR) by H2 were used to characterize the platinum catalysts. Using Ce0.8Zr0.2O2, Ce0.2Zr0.8O2, SiO2 as supports instead of TiO2, the activity sequence of 0.6 wt.% platinum with respect to the supports is TiO2 > SiO2 > Ce0.8Zr0.2O2 > Ce0.2Zr0.8O2, and this appears to be correlated with the dispersion of platinum on supports rather than the specific surface areas of the catalysts. Platinum loading on TiO2 has a great effect on the catalytic activity, and 0.6 wt.% Pt/TiO2 catalyst was observed to be the most active, which could be attributed to the well-dispersed platinum surface phase. The reduction temperature greatly affects the particle size and, consequently, the catalytic activity. The smaller particle size of platinum, due to its high dispersion on support, has a positive effect on catalytic performance. Increasing formaldehyde concentration and space velocity exhibits an inhibiting effect on the catalytic activity.  相似文献   

17.
Nanocrystalline TiO2 incorporated with praseodymium(III) nitrate has been prepared by an ultrasound method in a sol–gel process. The prepared sample is characterized by X-ray diffraction (XRD), nitrogen adsorption (BET surface area), UV–vis diffuse reflectance spectroscopy (UV–Vis DRS) and X-ray photoelectron spectroscopy (XPS). The prepared material consists of TiO2 nanocrystalline with 5 nm size incorporated with highly dispersed Pr(NO3)3. Visible light absorptions at 444, 469, 482 and 590 nm are observed in the prepared sample. These bands are attributed to the 4f transitions 3H4 → 3P2, 3H4 → 3P1, 3H4 → 3P0 and 3H4 → 1D2 of praseodymium(III) ions, respectively. This sample Pr(NO3)3-TiO2, as a novel visible light photocatalyst, shows high activity and stability in the decomposing rhodamine-B (RhB) and 4-chlorophenol (4-CP) under visible light irradiation. Results examined by electron spin resonance spectroscopy (ESR) reveal that the irradiation (>420 nm) of the photocatalyst dispersed in RhB aqueous solution induces the generation of highly active hydroxyl radicals (OH), leading to the cleavage of the whole conjugated chromophore structure of RhB. A mechanism based on local excitation of praseodymium(III) nitrate chromophore and interfacial charge transfer from the chromophore to TiO2 is proposed to explain the formation of active hydroxyl radicals in the photocatalytic system under visible light irradiation.  相似文献   

18.
A magnetically separable nitrogen-doped photocatalyst TiO2−xNx/SiO2/NiFe2O4 (TSN) with a typical ferromagnetic hysteresis was prepared by a simple process: the magnetic SiO2/NiFe2O4 (SN) dispersion prepared by a liquid catalytic phase transformation method and the visible-light-active photocatalyst TiO2−xNx were mixed, sonificated, dried, and calcined at 400 °C. The prepared photocatalyst is photoactive under visible light irradiation and easy to be separated from a slurry-type photoreactor under the application of an external magnetic field, being one of promising photocatalysts for wastewater treatment. Transmission electron microscope (TEM) and X-ray diffractometer (XRD) were used to characterize the structure of the TSN photocatalyst. The results indicate that the magnetic SiO2/NiFe2O4 (SN) nanoparticles adhere to the surface of TiO2−xNx congeries. The magnetic photocatalyst TSN shows high catalytic activity for the degradation of methyl orange in water under UV and visible light irradiation (λ > 400 nm). SiO2 coating round the surface of NiFe2O4 nanoparticles prevents effectively the injection of charges from TiO2 particles to NiFe2O4, which gives rise to the increase in photocatalytic activity. Moreover, the recycled TSN exhibits a good repeatability of the photocatalytic activity.  相似文献   

19.
Titania-coated silica microspheres containing 0.5–3.0 theoretical layers of TiO2 have been prepared by homogeneous precipitation of TiCl3. All these χ TiO2-SiO2 materials were characterized by X-ray diffraction and FT-Raman spectroscopy. TiO2 species are distributed on the surface as small anatase crystals and possess a titania-like behavior with a performance equivalent to that of bulk TiO2 for the photodegradation of phenol. The fraction of used titania is higher than that on bulk catalysts and the absorption of the irradiation by excess titania is prevented. The crystal size of titania particles is critical for optimum performance of the catalyst, since it determines the appropriate surface exposure of titanium sites. A minimum size appears to be required to efficiently mineralize phenol.  相似文献   

20.
The structural and catalytic properties of MoO3 catalysts supported on ZrO2, Al2O3, TiO2 and SiO2 with Mo surface densities, ns, in the range of 0.5–18.5 Mo/nm2 were studied for the oxidative dehydrogenation (ODH) of ethane by in situ Raman spectroscopy and catalytic activity measurements at temperatures of 400–540 °C. The molecular structure of the dispersed surface species evolves from isolated monomolybdates (MoO4 and MoO5, depending on the support) at low loadings to associated MoOx units in polymolybdate chains at high loadings and ultimately to bulk crystalline phases for loadings exceeding the monolayer coverage of the supports used. The nature of the oxide support material and of the Mo–O–support bond has a significant influence on the catalytic behaviour of the molybdena catalysts with monolayer coverage. The dependence of reactivity on the support follows the order ZrO2 > Al2O3 > TiO2 > SiO2. The oxygen site involved in the anchoring Mo–O–support is of relevance for the catalytic activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号