首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Site-directed mutagenesis was carried out at 10 highly conserved polar residues within the C-terminal half of yeast DNA topoisomerase II, which corresponds to the A subunit of bacterial DNA gyrase, to identify amino acid side chains that augment the active site tyrosine Tyr-782 in the breakage and rejoining of DNA strands. Complementation tests show that alanine substitution at Arg-690, Asp-697, Lys-700, Arg-704, or Arg-781, but not at His-735, His-736, Glu-738, Gln-750, or Asn-828, inactivates the enzyme in vivo. Measurements of DNA relaxation and cleavage by purified mutant enzymes show that these activities are abolished in the R690A mutant and are much reduced in the mutants D697A, K700A, R704A, and R781A. When a Y782F polypeptide with a phenylalanine substituting for the active site tyrosine was expressed in cells that also express the R690A polypeptide, the resulting heterodimeric yeast DNA topoisomerase II was found to nick plasmid DNA. Thus in a dimeric wild-type enzyme, Tyr-782 in one protomer and Arg-690 in the other cooperate in trans in the catalysis of DNA cleavage. For the residues D697A, K700A, R704A, and R781A, their locations in the crystal structures of type II DNA topoisomerase fragments suggest that Arg-781 and Lys-700 might be involved in anchoring the 5' and 3' sides of the broken DNA, respectively, and the roles of Asp-697 and Arg-704 are probably less direct.  相似文献   

2.
Mutant adenylosuccinate lyases of Bacillus subtilis were prepared by site-directed mutagenesis with replacements for His141, previously identified by affinity labeling as being in the active site [Lee, T. T., Worby, C., Dixon, J. E., and Colman, R. F. (1997) J. Biol. Chem. 272, 458-465]. Four substitutions (A, L, E, Q) yield mutant enzyme with no detectable catalytic activity, while the H141R mutant is about 10(-)5 as active as the wild-type enzyme. Kinetic studies show, for the H141R enzyme, a Km that is only 3 times that of the wild-type enzyme. Minimal activity was also observed for mutant enzymes with replacements for His68 [Lee, T. T., Worby, C., Bao, Z. -Q., Dixon, J. E., and Colman, R. F. (1998) Biochemistry 37, 8481-8489]. Measurement of the reversible binding of radioactive adenylosuccinate by inactive mutant enzymes with substitutions at either position 68 or 141 shows that their affinities for substrate are decreased by only 10-40-fold. These results suggest that His141, like His68, plays an important role in catalysis, but not in substrate binding. Evidence is consistent with the hypothesis that His141 and His68 function, respectively, as the catalytic base and acid. Circular dichroism spectroscopy and gel filtration chromatography conducted on wild-type and all His141 and His68 mutants reveal that none of the mutant enzymes exhibits major structural changes and that all the enzymes are tetramers. Mixing inactive His141 with inactive His68 mutant enzymes leads to striking increases in catalytic activity. This complementation of mutant enzymes indicates that His141 and His68 come from different subunits to form the active site. A tetrameric structure of adenylosuccinate lyase was constructed by homology modeling based on the known structures in the fumarase superfamily, including argininosuccinate lyase, delta-crystallin, fumarase, and aspartase. The model suggests that each active site is constituted by residues from three subunits, and that His141 and His68 come from two different subunits.  相似文献   

3.
5-Aminolevulinate synthase (EC 2.3.1.37) catalyzes the first reaction in the heme biosynthetic pathway in nonplant eukaryotes and some prokaryotes. Homology sequence modeling between 5-aminolevulinate synthase and some other alpha-family pyridoxal 5'-phosphate-dependent enzymes indicated that the residue corresponding to the Arg-439 of murine erythroid 5-aminolevulinate synthase is a conserved residue in this family of pyridoxal 5'-phosphate-dependent enzymes. Further, this conserved arginine residue in several enzymes, e.g., aspartate aminotransferase, for which the three-dimensional structure is known, has been shown to interact with the substrate carboxyl group. To test whether Arg-439 is involved in substrate binding in murine erythroid 5-aminolevulinate synthase, Arg-439 and Arg-433 of murine erythroid 5-aminolevulinate synthase were each replaced by Lys and Leu using site-directed mutagenesis. The R439K mutant retained 77% of the wild-type activity; its K(m) values for both substrates increased 9-13-fold, while the activity of R433K increased 2-fold and the K(m) values for both substrates remained unchanged. R439L had no measurable activity as determined using a standard 5-aminolevulinate synthase enzyme-coupled activity assay. In contrast, the kinetic parameters for R433L were comparable to those of the wild-type. Dissociation constants (Kd) for glycine increased 5-fold for R439K and at least 30-fold for R439L, while Kd values for glycine for both R433K and R433L mutants were similar to those of the wild-type. However, there was not much difference in methylamine binding among the mutants and the wild-type, excepting of a 10-fold increase in K(d)methylamine for R439L. R439K proved much less thermostable than the wild-type enzyme, with the thermotransition temperature, T1/2, determined to be 8.3 degrees C lower than that of the wild-type enzyme. In addition, in vivo complementation analysis demonstrated that in the active site of murine erythroid 5-aminolevulinate synthase, R439 is contributed from the same subunit as K313 (which is involved in the Schiff base linkage of the pyridoxal 5'-phosphate cofactor) and D279 (which interacts electrostatically with the ring nitrogen of the cofactor), while another subunit provides R149. Taken together, these findings suggest that Arg-439 plays an important role in substrate binding of murine erythroid 5-aminolevulinate synthase.  相似文献   

4.
Vaccinia topoisomerase, a eukaryotic type IB enzyme, catalyzes relaxation of supercoiled DNA by cleaving and rejoining DNA strands through a DNA- (3'-phosphotyrosyl)-enzyme intermediate. We have performed a kinetic analysis of mutational effects at four essential amino acids: Arg-130, Gly-132, Tyr-136 and Lys-167. Arg-130, Gly-132 and Lys-167 are conserved in all members of the type IB topoisomerase family. Tyr-136 is conserved in all poxvirus topoisomerases. We show that Arg-130 and Lys-167 are required for transesterification chemistry. Arg-130 enhances the rates of both cleavage and religation by 10(5). Lys-167 enhances the cleavage and religation reactions by 10(3) and 10(4), respectively. An instructive distinction between these two essential residues is that Arg-130 cannot be replaced by lysine, whereas substituting Lys-167 by arginine resulted in partial restoration of function relative to the alanine mutant. We propose that both basic residues interact directly with the scissile phosphate at the topoisomerase active site. Mutations at positions Gly-132 and Tyr-136 reduced the rate of strand cleavage by more than two orders of magnitude, but elicited only mild effects on religation rate. Gly-132 and Tyr-136 are suggested to facilitate a pre-cleavage activation step. The results of comprehensive mutagenesis of the vaccinia topoisomerase illuminate mechanistic and structural similarities to site-specific recombinases.  相似文献   

5.
Branching enzyme (BE) belongs to the amylolytic family which contains four highly conserved regions. These regions are proposed to play an important role in catalysis as they are thought to be necessary for catalysis and/or binding the substrate. Only one arginine residue was found to be conserved in a catalytic center at the same position in all known sequences of BEs from various species as well as in the alpha-amylase enzyme family. In mBEII, a conserved Arg residue 384 is in catalytic region 2. We have used site-directed mutagenesis of the Arg-384 residue in order to study its possible role in BE. Previous chemical modification studies (H. Cao and J. Preiss, 1996, J. Prot. Chem. 15, 291-304) suggest that it may play a role in substrate binding. Replacement of Arg-384 by Ala, Ser, Gln, and Glu in the active site caused almost total inactivation. However, a conservative mutation of the conserved Arg-384 by Lys resulted in some residual activity, approximately 5% of the wild-type enzyme. The kinetics of the purified mutant R384K enzyme were investigated and no large effect on the Km of the substrate amylose for BE was observed. Thus, these results suggest that conserved Arg residue 384 in mBEII plays an important role in the catalytic function of BEs but may not be directly involved in substrate binding.  相似文献   

6.
Neprilysin is a neutral peptidase that cleaves small peptide substrates on the amino-side of hydrophobic amino acid residues. In the present study, we have used inhibition of non-mutated and mutated enzymes with dipeptide inhibitors and hydrolysis of the substrate [Leu5, Arg6]enkephalin in order to evaluate the contribution of the S2' subsite to substrate and inhibitor binding. Our results suggest that (1) Arg-102 and Asn-542 provide major contributions to the interaction of the enzyme with the P2' residue of the substrate, (2) the S2' subsite is vast and can accommodate bulky side chains, and (3) Arg-102 restricts access to the S2' subsite to some side chains such as arginine.  相似文献   

7.
Formylation of initiator methionyl-tRNA by methionyl-tRNA formyltransferase (MTF) is important for initiation of protein synthesis in eubacteria. The determinants for formylation are clustered mostly in the acceptor stem of the initiator tRNA. Previous studies suggested that a 16 amino acid insertion loop, present in all eubacterial MTF's (residues 34-49 in the E. coli enzyme), plays an important role in specific recognition of the initiator tRNA. Here, we have analyzed the effect of site-specific mutations of amino acids within this region. We show that an invariant arginine at position 42 within the loop plays a very important role both in the steps of substrate binding and in catalysis. The kinetic parameters of the R42K and R42L mutant enzymes using acceptor stem mutant initiator tRNAs as substrates suggest that arginine 42 makes functional contacts with the determinants at the 3:70 and possibly also the 2:71 base pairs in the acceptor stem of the initiator tRNA. The kinetic parameters of the G41R/R42L double mutant enzyme are essentially the same as those of R42L mutant, suggesting that the requirement for arginine at position 42 cannot be fulfilled by an arginine at position 41. Along with other data, this result suggests that the insertion loop, which is normally unstructured and flexible, adopts a defined conformation upon binding to the tRNA.  相似文献   

8.
Site-directed mutagenesis and kinetic studies have been employed to identify amino acid residues involved in aspartate binding and transition state stabilization during the formation of beta-aspartyl-AMP in the reaction mechanism of Escherichia coli asparagine synthetase B (AS-B). Three conserved amino acids in the segment defined by residues 317-330 appear particularly crucial for enzymatic activity. For example, when Arg-325 is replaced by alanine or lysine, the resulting mutant enzymes possess no detectable asparagine synthetase activity. The catalytic activity of the R325A AS-B mutant can, however, be restored to about 1/6 of that of wild-type AS-B by the addition of guanidinium HCl (GdmHCl). Detailed kinetic analysis of the rescued activity suggests that Arg-325 is involved in stabilization of a pentacovalent intermediate leading to the formation beta-aspartyl-AMP. This rescue experiment is the second example in which the function of a critical arginine residue that has been substituted by mutagenesis is restored by GdmHCl. Mutation of Thr-322 and Thr-323 also produces enzymes with altered kinetic properties, suggesting that these threonines are involved in aspartate binding and/or stabilization of intermediates en route to beta-aspartyl-AMP. These experiments are the first to identify residues outside of the N-terminal glutamine amide transfer domain that have any functional role in asparagine synthesis.  相似文献   

9.
10.
High-affinity mu-conotoxin block of skeletal muscle Na+ channels depends on an arginine at position 13 (Arg-13). To understand both the mechanism of toxin interaction and the general structure of its binding site in the channel mouth, we examined by thermodynamic mutant cycle analysis the interaction between the critical Arg-13 and amino acid residues known to be in the channel's outer vestibule. Arg-13 interacts specifically with domain II Glu-758 with energy of about -3.0 kcal/mol, including both electrostatic and nonelectrostatic components, and with Glu-403 with energy of about -2.0 kcal/mol. Interactions with the other charged residues in the outer vestibule were shown to be almost entirely electrostatic, because these interactions were maintained when Arg-13 was replaced by lysine. These results place the bound Arg-13 at the channel mouth adjacent to the P (pore) loops of domains I and II. Distance estimates based on interaction energies suggest that the charged vestibule residues are in relative positions similar to those of the Lipkind-Fozzard vestibule model [Lipkind, G. M., and Fozzard, H. A. (1994) Biophys. J. 66, 1-13]. Kinetic analysis suggests that Arg-13 interactions are partially formed in the ligand-channel transition state.  相似文献   

11.
The role of amino acid residues located in the active site pocket of phosphatidylinositol-specific phospholipase C (PI-PLC) from Bacillus cereus[Heinz, D. W., Ryan, M., Bullock, T., & Griffith, O. H. (1995) EMBO J. 14, 3855-3863] was investigated by site-directed mutagenesis, kinetics, and crystal structure analysis. Twelve residues involved in catalysis and substrate binding (His32, Arg69, His82, Gly83, Lys115, Glu117, Arg163, Trp178, Asp180, Asp198, Tyr200, and Asp274) were individually replaced by 1-3 other amino acids, resulting in a total number of 21 mutants. Replacements in the mutants H32A, H32L, R69A, R69E, R69K, H82A, H82L, E117K, R163I, D198A, D198E, D198S, Y200S, and D274S caused essentially complete inactivation of the enzyme. The remaining mutants (G83S, K115E, R163K, W178Y, D180S, Y200F, and D274N) exhibited reduced activities up to 57% when compared with wild-type PI-PLC. Crystal structures determined at a resolution ranging from 2.0 to 2.7 A for six mutants (H32A, H32L, R163K, D198E, D274N, and D274S) showed that significant changes were confined to the site of the respective mutation without perturbation of the rest of the structure. Only in mutant D198E do the side chains of two neighboring arginine residues move across the inositol binding pocket toward the newly introduced glutamic acid. An analysis of these structure-function relationships provides new insight into the catalytic mechanism, and suggests a molecular explanation of some of the substrate stereospecificity and inhibitor binding data available for this enzyme.  相似文献   

12.
Glycosylasparaginase is an N-terminal nucleophile hydrolase and is activated by intramolecular autoproteolytic processing. This cis-autoproteolysis possesses unique kinetics characterized by a reversible N-O acyl rearrangement step in the processing. Arg-180 and Asp-183, involved in binding of the substrate in the mature enzyme, are also involved in binding of free amino acids in the partially formed substrate pocket on certain mutant precursors. This binding site is sequestered in the wild-type precursor. Binding of free amino acids on mutant precursors can either inhibit or accelerate their processing, depending on the individual mutants and amino acids. The polypeptide sequence at the processing site, which is highly conserved, adopts a special conformation. Asp-151 is essential for maintaining this conformation, possibly by anchoring its side chain into the partially formed substrate pocket through interaction with Arg-180. The reactive nucleophile Thr-152 is activated not only by deprotonation by His-150 but also by interaction with Thr-170, suggesting a His-Thr-Thr active triad for the autoproteolysis.  相似文献   

13.
Alignment of 23 branching enzyme (BE) amino acid sequences from various species showed conservation of two arginine residues. Phenylglyoxal (PGO) was used to investigate the involvement of arginine residues of maize BEI and BEII in catalysis. BE was significantly inactivated by PGO in triethanolamine buffer at pH 8.5. The inactivation followed a time- and concentration-dependent manner and showed pseudo first-order kinetics. Slopes of 0.73 (BEI) and 1.05 (BEII) were obtained from double log plots of the observed rates of inactivation against the concentrations of PGO, suggesting that loss of BE activity results from as few as one arginine residue modified by PGO. BE inactivation was positively correlated with [14C]PGO incorporation into BE protein and was considerably protected by amylose and/or amylopectin, suggesting that the modified arginine residue may be involved in substrate binding or located near the substrate-binding sites of maize branching enzymes I and II.  相似文献   

14.
The cDNA encoding PH-20 hyaluronidase from human sperm has been mutated at five positions by in vitro mutagenesis. We have changed three acidic amino acids and two arginine residues that are conserved in the sequence of mammalian PH-20 polypeptides as well as in the hyaluronidases from bee and hornet venom. Of the former, the mutants [Gln113]PH-20 and [Gln249]PH-20 had no detectable enzymatic activity; the mutant [Asn111]PH-20 had about 3% activity. The mutant [Thr252]PH-20 was also inactive, while [Gly176]PH-20 had only about 1% activity. This indicates that the PH-20 hyaluronidases, like numerous enzymes that hydrolyze glycosidic bonds, have acidic amino acids in their active site. Moreover, for the binding of the substrate, the polyanion hyaluronan, arginine residues appear to be essential.  相似文献   

15.
Eight polar amino acid residues in the putative substrate-binding region from Thr-360 to Val-379 in human endothelial nitric-oxide synthase (eNOS) (Thr-360, Arg-365, Cys-368, Asp-369, Arg-372, Tyr-373, Glu-377, and Asp-378) were individually mutated. Only two of these residues, Asp-369 and Arg-372, were found to be essential for enzyme activity. A further series of mutants was generated by replacing these two residues with various amino acids and the mutant proteins were expressed in a baculovirus system. Mutant eNOS had a very low L-citrulline formation activity with the exception of D369E and R372K, which retained 27% and 44% of the wild-type enzyme activity, respectively. Unlike the wild-type enzyme, all mutants except D369E, R372K, and R372M had a low spin heme (Soret peak at 416 nm). All the Asp-369 mutants had higher Kd values for L-arginine (1-10 mM) than wild-type eNOS (0.4 microM) and an unstable heme-CO complex, and except for D369E, had a very low (6R)-5,6,7, 8-tetrahydro-L-biopterin (BH4) content. In contrast, each of Arg-372 mutants retained a considerable amount of BH4, had a moderate reduction in L-arginine affinity, and had a more stable heme-CO complex. 1-Phenylimidazole did not bind to wild-type eNOS heme, but bound to all Asp-369 and Arg-372 mutants (Kd ranged from 10 to 65 microM) except R372K. Heme spin-state changes caused by binding of 3, 5-lutidine appeared to depend on both charge and size of the side chains of residues 369 and 372. Furthermore, all Asp-369 and Arg-372 mutants were defective in dimer formation. These results suggest that residues Asp-369 and Arg-372 in eNOS play a critical role in oxygenase domain active-site structure and activity.  相似文献   

16.
Chemical modification implicates arginine residues of the Cerebratulus lacteus neurotoxin B-IV in biological activity. In the present study, we used site-directed mutagenesis to assess the functional contributions of each of these residues. Panels of mutants at each site have been constructed by polymerase chain reaction and recombinant proteins expressed and purified to homogeneity using an Escherichia coli expression system developed in this laboratory. All substitutions for Arg-17 (Gln, Ala, or Lys) yield proteins having undetectable levels of activity, while charge neutralizing replacement of Arg-25 (R25Q) causes a 400-fold reduction in specific toxicity. However, the R25K mutein is almost as active as natural toxin. Circular dichroism spectroscopy indicates that there are no major conformational changes in any of these muteins. These results therefore demonstrate the requirement for a guanidinium group at position 17, and a positive charge at position 25. NMR analyses (Hansen, P. E., Kem, W. R., Bieber, A. L., and Norton, R. S. (1992) Eur. J. Biochem. 210, 231-240) reveal neurotoxin B-IV to contain two antiparallel alpha-helices, which together include 57% of the sequence. Both Arg-17 and Arg-25 lie on the same face of the N-terminal helix (residues 13-26), as do the carboxyl groups of Glu-13 and Asp-21. However, charge neutralizing mutations of the latter two sites have no effects on biological activity. Arg-34, situated near the N terminus of helix 2 (residues 33-49) is also important for activity, as its replacement by Gln or Ala diminishes activity by 20- and 80-fold, respectively. However, unlike Arg-17 and Arg-25, thermal denaturation experiments suggest that R34Q may be structurally destabilized relative to wild-type B-IV.  相似文献   

17.
The isopenicillin N synthase of Cephalosporium acremonium (cIPNS) involves a catalytically important non-heme iron which is coordinated credibly to histidine residues. A comparison of the IPNS genes from various microbial sources indicated that there are seven conserved histidine residues. These were individually replaced by leucine residues through site-directed mutagenesis, and the sites of mutation were confirmed by DNA sequencing. The seven mutant genes were cloned separately into the vector pET24d for expression in Escherichia coli BL21 (DE3), and the proteins were expressed as soluble enzymes. All the resulting mutant enzymes obtained have mobilities of approximately 38 kDa, identical with the wild-type enzyme on SDS-polyacrylamide gel electrophoresis, and were also reactive to cIPNS antibodies. The enzymes were purified by ammonium sulfate precipitation and DEAE-Sephadex A-50 ion exchange chromatography, and these were analyzed for enzyme activity. A group of mutant enzymes, H49L, H64L, H116L, H126L, and H137L, were found to be enzymatically active with reduced activities of 16-93.7%, indicating that they are not essential for catalysis. Two of the mutant enzymes, H216L and H272L, were found to have lost their enzymatic activity completely, indicating that both His-216 and His-272 are crucial for catalysis. It is suggested that these histidines are likely to serve as ligands for binding to the non-heme iron in the IPNS active site. Alignment of the amino acid sequence of IPNS to related non-heme Fe(2+)-requiring enzymes indicated that the two essential histidine residues correspond to two invariant residues located in highly homologous regions. The conservation of the two closely located histidine residues indicates the possible conservation of similar iron-binding sites in these enzymes.  相似文献   

18.
Conditions are described under which the nonphysiological substrate mercuric bromide (HgBr2) is rapidly turned over, both by the wild type (CCCC) and by an active site double mutant (CCAA) of mercuric reductase in which the C-terminal cysteines 557' and 558' are replaced by alanine and only the redox-active pair Cys135 and Cys140 are available for catalysis. A maximum rate of turnover kcatapp of approximately 18 s-1 (at 3 degreesC) for both enzymes is observed, and at high [HgBr2]/[enzyme] ratios, inhibition is found. The UV-vis spectral changes during turnover are closely similar in both enzymes, indicating that catalysis follows the same enzymatic mechanism. Single-turnover analysis of the mutant enzyme shows that after binding of HgBr2, two further rapid events ensue, followed by reduction of the metal ion (kobs approximately 23.5 s-1). It is shown that under multiple-turnover conditions, completion of the catalytic cycle must occur via an ordered mechanism where rapid binding of a new molecule of HgBr2 to EH2.NADP+ precedes exchange of the pyridine nucleotide. Binding of HgBr2 to the active site triple mutant C135A/C557A/C558A (ACAA) is ca. 100-fold slower compared to that of the CCAA mutant and results in no detectable turnover. It is concluded that in the reducible enzyme.Hg(II) complex, the metal ion is coordinated to Cys135 and Cys140 and that for efficient catalysis both residues are required. Furthermore, the data imply that binding to EH2.NADPH occurs via initial rate-limiting attack of Cys135, followed by reaction with Cys140.  相似文献   

19.
5-Aminolevulinate synthase (EC 2.3.1.37) is the first enzyme in the heme biosynthetic pathway of animals, fungi and some bacteria. It functions as a homodimer and requires pyridoxal 5'-phosphate as an essential cofactor. In mouse erythroid 5-aminolevulinate synthase, lysine 313 has been identified as the residue involved in the Schiff base linkage with pyridoxal 5'-phosphate [Ferreira, G. C., et al. (1993) Protein Sci. 2, 1959-1965], while arginine 149, a conserved residue among all known 5-aminolevulinate synthase sequences, is essential for function [Gong & Ferreira (1995) Biochemistry 34, 1678-1685]. To determine whether each subunit contains an independent active site (i.e., intrasubunit arrangement) or whether the active site resides at the subunit interface (i.e., intersubunit arrangement), in vivo complementation studies were used to generate heterodimers from site-directed, catalytically inactive mouse 5-aminolevulinate synthase mutants. When R149A and K313A mutants were co-expressed in a hem A- Escherichia coli strain, which can only grow in the presence of 5-aminolevulinate or when it is transformed with an active 5-aminolevulinate synthase expression plasmid, the hem A- E. coli strain acquired heme prototrophy. The purified K313A/R149A heterodimer mixture exhibited K(m) values for the substrates similar to those of the wild-type enzyme and approximately 26% of the wild-type enzyme activity which is in agreement with the expected 25% value for the K313A/R149A coexpression system. In addition, DNA sequencing of four Saccharomyces cerevisiae 5-aminolevulinate synthase mutants, which lack ALAS activity but exhibit enzymatic complementation, revealed that mutant G101 with mutations N157Y and N162S can complement mutant G220 with mutation T452R, and mutant G205 with mutation C145R can complement mutant Ole3 with mutation G344C. Taken together, these results provide conclusive evidence that the 5-aminolevulinate synthase active site is located at the subunit interface and contains catalytically essential residues from the two subunits.  相似文献   

20.
S-Adenosylmethionine (AdoMet) synthetase catalyzes the formation of AdoMet and tripolyphosphate (PPPi) from ATP and L-methionine and the subsequent hydrolysis of the PPPi to PPi and Pi before product release. Little is known about the roles of active-site residues involved in catalysis of the two sequential reactions that occur at opposite ends of the polyphosphate chain. Crystallographic studies of Escherichia coli AdoMet synthetase showed that arginine-244 is the only arginine near the polyphosphate-binding site. Arginine-244 is embedded as the seventh residue in the conserved sequence DxGxTxxKxI which is also found at the active site of inorganic pyrophosphatases, suggesting a potential pyrophosphate-binding motif. Chemical modification of AdoMet synthetase by the arginine-specific reagents phenylglyoxal or p-hydroxyphenylglyoxal inactivates the enzyme. ATP and PPPi protect the enzyme from inactivation, consistent with the presence of an important arginine residue in the vicinity of the polyphosphate-binding site. Site-specific mutagenesis has been used to change the conserved arginine-244 to either leucine (R244L) or histidine (R244H). In the overall reaction, the R244L mutant has the kcat reduced approximately 10(3)-fold, with a 7 to 10-fold increase in substrate Km values; the R244H mutant has an approximately 10(5)-fold decrease in kcat. In contrast, the kcat values for hydrolysis of added PPPi by the R244L and R244H mutants have been reduced by less than 2 orders of magnitude. In contrast to the wild-type enzyme in which 98% of the Pi formed originates as the gamma-phosphoryl group of ATP, in the R244L mutant the orientation of the PPPi intermediate equilibrates at the active site yielding equal amounts of Pi from the alpha- and gamma-phosphoryl groups of ATP. Thus, the active-site arginine has a profound role in the cleavage of PPPi from ATP during AdoMet formation and in maintaining the orientation of PPPi in the active site, while playing a lesser role in the subsequent PPPi hydrolytic reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号