首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
里氏木霉固体发酵生产纤维素酶的研究   总被引:15,自引:0,他引:15  
以里氏木霉突变株RM-27为纤维素酶生产菌,采用固体发酵法,29℃发酵144小时,其滤纸酶活和β-葡萄糖苷酶活分别为600mg和115mg葡萄糖/gDMh。并系统研究了各种营养成份和培养条件对RM-27菌株产纤维素酶的影响。最适发酵培养基为稻草杆或小麦杆70g、麸皮30g、硫酸铵3.0g、玉米浆2.0g,水200ml,自然pH。酶反应最适温度60 ̄65℃,最适pH为5.0。酶pH稳定性较好,在pH  相似文献   

2.
里氏木霉 Rut C-30 液态发酵法生产纤维素酶   总被引:2,自引:0,他引:2       下载免费PDF全文
探讨了增强里氏木霉RutC-30产纤维素酶的方法,添加葡糖糖于培养基中,可促进菌体生长,但不能提高产酶;采用Avicel与麸皮复合碳源,以及使用KH2PO4-K2HPO4缓冲系统控制发酵液pH,在摇瓶发酵条件下,可获得很高活力的纤维素酶,培养6d,酶活可达到CMCase1667~2084nmol·s-1·ml-1,FPA150~200nmol·s-1·ml-1.采用2.5L发酵罐培养,通过控制pH和溶氧,纤维素酶活力为CMCase2223.8nmol·s-1·ml-1,FPA194.5nmol·s-1·ml-1.  相似文献   

3.
里氏木霉液体发酵法生产纤维素酶   总被引:29,自引:4,他引:29  
通过比较几株霉菌产纤维素酶活力,发现里氏木霉RutC-30活力最高;采用Avicel与麸皮复合碳源,以及使用KH2PO4-K2HPO4缓冲系统控制发酵液pH,28℃摇瓶发酵6d,最高酶活达到CMCase100-125U/ml,FPA9-12U/ml。采用2.5升发酵罐培养,通过控制pH和溶氧,纤维素酶活力为CMCase133.4U/ml,FPA11.67U/ml。用硫铵盐析法提取制得纤维素酶干粉,其活力为CMCase3074.9U/g,FPA166.7U/g。  相似文献   

4.
黑曲霉液体发酵纤维素酶的研究   总被引:6,自引:0,他引:6  
在黑曲霉DM—1液体深层发酵所产纤维素酶系中,β-葡萄糖苷酶活性特别高。系统研究了DM—1菌株的摇瓶产酶条件及25L发酵罐发酵工艺。25L发酵罐试验结果表明,在通风量0.4~1.0vvm、搅拌转速250~500r/m、发酵温度31℃及控制发酵液pH在4.0左右的条件下,发酵104小时,其β-葡萄糖苷酶活和CMC分别为330和241mg葡萄糖/ml。发酵滤液经硫铵盐析沉淀、过滤或离心及干燥等过程得固体纤维素干酶粉。其中β-葡萄糖苷酶活为13500mg葡萄糖/g,平均收率80.2%。  相似文献   

5.
本文对里氏木霉产纤维素酶发酵培养条件及对其所产纤维素酶的酶学性质进行初步研究。结果表明,里氏木霉发酵产酶的最佳培养基为:麦麸1.8%、硝酸钠1.3%、碳酸钙0.3%、氯化钠0.2%、磷酸二氢钾0.3%;里氏木霉所产纤维素酶的最适反应条件为:pH 4.0、50℃,金属离子Fe2+、Co2+、Mn2+、Ca2+对酶活有促进作用,而Fe3+、Ag+对酶有抑制作用。经培养基优化后,发酵液上清中的最终酶活为116.64U/mL,是优化前的3.5倍。  相似文献   

6.
里氏木霉91-3纤维素酶产生条件的研究   总被引:4,自引:0,他引:4  
里氏木霉(Trichodermareesei)A_3经亚硝基胍和紫外线复合处理,获得一株纤维素酶高产菌株91-3。该菌株在最适固态发酵条件下,纤维素酶滤纸酶活力为170u/g曲,产酶水平是出发菌株的1.6倍。酶作用的最适条件为pH4.8,50℃;pH稳定范围为3~7;90℃处理7min,酶活保存率为91.64%;室温放置半年,酶活保存率在90%以上,室温放置一年,酶活保存率在80%以上。  相似文献   

7.
里氏木霉91-3纤维素酶产生条件的研究   总被引:5,自引:0,他引:5  
里氏木霉(Trichodermareesei)A_3经亚硝基胍和紫外线复合处理,获得一株纤维素酶高产菌株91-3。该菌株在最适固态发酵条件下,纤维素酶滤纸酶活力为170u/g曲,产酶水平是出发菌株的1.6倍。酶作用的最适条件为pH4.8,50℃;pH稳定范围为3~7;90℃处理7min,酶活保存率为91.64%;室温放置半年,酶活保存率在90%以上,室温放置一年,酶活保存率在80%以上。  相似文献   

8.
以预处理后的造纸污泥为研究对象,检测污泥的组分,利用预处理后造纸污泥,培养里氏木霉生产纤维素酶。研究了碳源浓度、通气量、pH值、摇床转速、温度对里氏木霉产酶的影响,优化产酶条件。结果表明,里氏木霉在优化后的产酶条件下,即碳源浓度40g/L、通气量120L/天、pH值4~6、摇床转速180 r/min、第一天30℃、第二天开始28℃培养时间7天,发酵培养所得粗酶液中纤维素酶和木聚糖酶酶活较优化前的有明显的提高。优化后的滤纸酶活、羧甲基纤维素酶酶活、木聚糖酶酶活分别为87.53U/m L、121.66U/m L、202.45U/m L。  相似文献   

9.
利用旋转回归法研究里氏木霉Rut C-30发酵生产纤维素酶的2个重要因素:微晶纤维素粉(Avicel)、麸皮对滤纸酶活的影响,并拟合出回归方程。经回归分析表明,培养基中Avicel、麸皮的含量及其配比对滤纸酶活有显著影响。通过岭脊分析寻优得出:Avicel最佳浓度为1.34%、麸皮最佳浓度为3.35%,在此优化条件下滤纸酶活可达6.51 IU/ml。用30L发酵罐进行放大试验,滤纸酶活可达10.84 IU/ml,CMCase达到449.57 IU/ml。  相似文献   

10.
研究比较了不同白腐真菌[变色栓菌(Trametes versicolor)、粗毛革孔菌(Coriolopsis gallica)、爪哇漏斗状侧耳(Pleurotus sajor-caju)]预处理玉米秸秆得到的粗酶液对里氏木霉(Trichoderma reesei)产纤维素酶和木聚糖酶及糖化产生的影响。结果表明,3种白腐真菌粗酶液对里氏木霉产酶影响均为降低纤维素酶的酶活力,提高木聚糖酶的酶活力,作用效果依次为变色栓菌爪哇漏斗状侧耳粗毛革孔菌。加入变色栓菌制备的酶液后,里氏木霉产纤维素酶酶活降低60.61%,木聚糖酶酶活增长60.94%;糖化产葡萄糖量降低了38.84%,产木糖量增长了395%。研究证实白腐真菌粗酶液对里氏木霉发酵产纤维素酶和纤维素酶的糖化有抑制作用,对产木聚糖酶和木聚糖酶水解糖化有协同作用。  相似文献   

11.
利用旋转回归法研究里氏木霉WX-112发酵生产纤维素酶的两个重要因素:微晶纤维素粉(Avicel)和麸皮对滤纸酶活的影响,并拟合出回归方程。经回归分析表明,培养基中Avicel、麸皮的含量及其配比对滤纸酶活有显著影响。通过岭脊分析寻优得出:Avicel最佳浓度为1.34g/dL、麸皮最佳浓度为3.35g/dL,在此优化条件下滤纸酶活可迭6.51U/mL。用30L发酵罐进行放大试验,滤纸酶涪可达10.84U/mL,CMCase达到449.57U/mL。  相似文献   

12.
利用多菌种共发酵技术转化玉米秸杆的研究   总被引:4,自引:0,他引:4  
较详细研究了高产纤维素酶生产菌长柄木霉TB9702和康宁木霉TB9704的耐氨特性以及混合菌共发酵对天然纤维素材料终产物中菌体蛋白质和纤维素利用率的影响。并建立了混合菌发酵的共生关系。研究表明:高产纤维素酶的菌种(TB9702,TB9704)于PH5.0,30℃的条件下恒温、恒速摇瓶培养,其对氨的耐受能力分别达到了0.48%、0.33%(以(NH4)2SO4计);而CMC酶活分别为160、210;  相似文献   

13.
黑曲霉固态培养生产纤维素酶的研究   总被引:14,自引:0,他引:14  
黑曲霉突变株DM-1是一株产纤维素酶菌株,其中β葡萄糖苷酶活性特别高。采用粗纤维原料固体培养,发酵96小时(培养温度31℃),其滤纸酶活和β葡萄糖苷酶活分别为95和1200mg葡萄糖/gDMh。本试验系统研究了各种营养成份和培养条件对DM-1菌株产纤维素酶的影响。最适发酵培养基为:稻草杆(或麦杆)∶麦麸为60∶40、硫酸铵3.0、硫酸镁0.3、玉米浆3.0,加水200%,自然pH;环境湿度85%-90%。酶反应最适温度和pH分别为55℃-60℃和pH5.0。酶pH稳定性较好,在pH3.0-8.0范围内处理1小时,残余酶活力在85%以上,该酶经55℃处理30min,剩余酶活力为86.0%。  相似文献   

14.
里氏木霉纤维素酶突变株选育的研究   总被引:1,自引:0,他引:1  
以里氏木霉WXR-8为出发菌株,经紫外和亚硝基胍诱变处理后,得到一株抗纤维二糖阻遏突变株RM-27。突变株RM-27的纤维素滤纸酶活提高了64.5%。经过发酵条件优化后,采用固体发酵,RM-27菌株发酵144h(培养温度29℃),其滤纸酶活和β-葡萄糖苷酶活分别为600mg和115mg葡萄糖/gDMh。  相似文献   

15.
里氏木霉纤维素酶在酒精生产中应用的研究   总被引:4,自引:1,他引:4  
肖冬光  王德培 《酿酒》1997,(3):12-16
本文探讨了里氏木霉纤维素酶的生产、性质及在酒精生产中的应用。采用固态培养法生产纤维素酶,最佳培养条件为:pH4.4 ̄4.6,温度28 ̄30℃,物料水份68 ̄70%,培养4 ̄5天,在此条件下,其CMCNa酶活可达9000 ̄12000mgG/g·h。纤维素酶应用于以玉米为原料的酒精生产,其最适使用工艺为:添加量每克原料12单位,1/3的纤维素酶在调浆时加入,2/3的纤维素酶在糖化后加入。在此试验条件下  相似文献   

16.
用粗壮脉纹胞菌分别复合东方伊莎酵母、里氏木霉、绿色木霉、乳酸杆菌固态发酵已去除茶皂素的茶粕,通过测定发酵产物中3种纤维素酶:外切葡聚糖酶(C1)、内切葡聚糖酶(Cx)、β-葡萄糖苷酶(β-G)及总酶滤纸酶(filter paper activity,FPA)的酶活力来探讨其分解粗纤维素的协同作用。粗壮脉纹胞菌和绿色木霉混合发酵产生的C1酶酶活力较粗壮脉纹胞菌单菌发酵提高了51.09%,粗壮脉纹胞菌和绿色木霉复合发酵较单菌发酵延长了其纤维素酶分泌的周期,96 h时FPA酶活力达到2.782 U/g;粗壮脉纹胞菌复合里氏木霉、绿色木霉混合发酵组在发酵10 d后对茶粕粗纤维的最终降解率分别达到了64.19%和61.59%;接种量对单菌和混合菌发酵产纤维素酶影响总体趋势是随着接种量增加酶活力提高,但粗壮脉纹胞菌单菌发酵纤维素酶酶活力在接种量超过9 mL/100 g后开始下降。表明粗壮脉纹胞菌复合里氏木霉、绿色木霉混合发酵降解纤维素具有协同作用。  相似文献   

17.
热带地区资源丰富的椰皮瓤作为一种新的优良基质,利用绿色木霉NCIM1051进行固体发醇生产纤维素酶,研究了绿色木霉在椰皮瓤固体基质培养中,基质预处理的形式,营养培养基的类型和水平,按种量,平均基质颗粒大小,和发酵时间对绿色木霉生产纤维素酶的影响。发现用H_2O_2预处理的椰皮瓤作基质较好,Reese和Mandels氏无机液与椰皮瓤混合比率为10:1(v/w,mlg ̄-1)纤维素酶活力最高。接种量对酶产量的影响很小。基质平均颗粒为375μm时酶产量较高,发酵7天最大FPA和Cmlare活力发别为4.27和12.05Iu/g。发酵8天后,纤维二糖酶活力最大为1.8Iu/g。  相似文献   

18.
介绍了里氏木霉与黑曲霉共生用固态发酵工艺生产饲料用酶的方法。借助同时糖化与发酵的概念,在里氏木霉生长繁殖进入旺盛时期适时接入黑曲霉。而黑曲霉与里氏木霉共生,不仅有益于酶系的改善,而且黑曲霉的生长繁殖消耗了纤维素酶促水解所生成的葡萄糖等,有益于纤维素酶的合成。与此同时生成适量的酸性蛋白酶、果胶酶及糖化酶,提出了原料的利用价值。研究结果表明,影响酶活力的关键因素是培养基的水分及接种的时间,纤维素的量与结构亦是一个重要的因素。  相似文献   

19.
本文以稻草为主要碳源,对几种真菌产纤维素酶的能力进行了比较研究,发现康氏木霉ZJ4产酶能力最强。研究了康氏木霉ZJ4发酵产纤维素酶的发酵条件,结果表明:康氏木霉ZJ4发酵产纤维素酶的培养基组成为(g/L):稻草40,麦麸20,大麦粉16.5,(NH4)2SO410,装液量30mL,起始pH5.0。产酶条件为:培养温度28℃,转速200r/min,当培养时间为144h,纤维素酶活达到最高值。  相似文献   

20.
以摇瓶分批发酵条件为基础,对基因工程菌株里氏木霉(Trichodermareesei)306进行了5L发酵罐分批发酵条件的研究。确定了适宜的发酵条件:温度为28℃,溶氧浓度控制30%饱和度,pH值在自然状态下进行发酵。以5L发酵罐分批发酵试验数据为依据,对里氏木霉306生物合成t-PA分批发酵动力学进行了研究。应用MATLAB工具软件进行非线性规划,建立了菌体生长、底物消耗和产物合成的发酵动力学模型。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号