首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Numerical simulation of particle flow in a sand trap   总被引:1,自引:0,他引:1  
Sand traps are used to measure Aeolian flux. Since they modify the surrounding wind velocity field their gauging represents an important challenge. We use numerical simulations under the assumption of homogeneous turbulence based on FLUENT to systematically study the flow field and trapping efficiency of one of the most common devices based on a hollow cylinder with two slits. In particular, we investigate the dependence on the wind speed, the Stokes number, the permeability of the membrane on the slit and the saltation height.  相似文献   

2.
We numerically investigate the effects of restitution and specularity coefficients on the characteristics of dispersed gas-particle flows through a sudden expansion. The studies are carried out using an indigenous finite volume flow solver in a collocated framework with two-fluid model. Parametric studies are performed to gain insights into the differences in recirculation patterns that arise due to variations in restitution and specularity coefficients. The simulations show that particle-particle interactions, quantified by restitution coefficient (e) have a greater impact on recirculation characteristics than particle-wall interactions, which are quantified by specularity coefficient (?). Studies reveal that the recirculation lengths tend to decrease as particle collisions become more elastic (as e tends to unity) while they increase, as the value of ? increases. However, the changes in recirculation length are very gradual and less pronounced when only particle-wall interactions are considered as compared to particle-particle interactions. From the range of parametric variations studied in this work, the maximum recirculation length has been found when the value of ? is maximum and that of e is minimum.  相似文献   

3.
In this study, a direct numerical simulation (DNS) of the ignition of a single particle freely moving in a uniform flow is performed to investigate the particle’s ignition behavior in detail. The Arbitrary Lagrangian-Eulerian (ALE) method is employed to compute the six degrees of freedom motion of a particle (Zhang et al., 2015). The computational setting follows the experiment designed by Lee and Choi (2015). The volatile gas that is composed of methane blows out at the particle surface. Its velocity is calculated by Ex-CPD model (Umemoto et al., 2017) and its direction is set perpendicular to the particle surface. The ignition behavior is compared with that observed in the experiment. The effect of the particle’s shape is also investigated. Results show that the ignition delay of the particle and the flame inclined angle are in good agreement with that of the experiment. While examining the combustion of the gas phase by considering the variation of Flame Index (FI), it is found that a premixed and diffusion regions are formed around the particle after the devolatilization starts. The gas phase ignites at the boundary of the premixed and diffusion regions and the flame propagates towards the particle. This causes a rapid increasing of the temperature and the volatile velocity on the particle surface. Finally, a diffusion flame is formed and reaches a stable state around the particle. It is also revealed that the flame keeps spherical despite the spheroidal shape of the particle.  相似文献   

4.
5.
Triboelectric separation is an effective way to separate fine powders with particle sizes and densities in the same order of magnitude. Many relevant process variables influence the charging behaviour; however, the corresponding effects on the subsequent separation of particles remain unknown. To utilize triboelectric separation as a powerful tool for fine powder separation, process parameters such as the choice of contact wall materials in the charging region have to be investigated. We report for the first time the influence of the tube’s wall material, in which particle charging took place, on triboelectric separation of fine protein-starch mixtures. Different electrically insulating materials along the triboelectric series were tested. No significant influence of the wall material on the separation selectivity and efficiency was found. In addition, particle-wall interaction was inhibited using an experimental setup which allows to control the flow boundary-layer by blowing out air through the tube wall. Also the results obtained by this novel setup showed no significant differences compared to the setup with particle-wall interactions. Additionally, CFD simulations were used to confirm the absence of particle-wall interactions in the boundary-layer control setup. A variation of the boundary-layer thickness leads to a constriction of the particle-containing flow region in the centre of the pipe. Experiments show that this compression of the particle flow zone results in no further increase in selectivity and efficiency of separation. Thus, particle-particle interaction is the prevalent triboelectric charging mechanism of fine powders charged in a turbulent flow regime.  相似文献   

6.
7.
The Navier-Stokes equations are solved numerically for laminar viscous incompressible fluid flow in a plane duct with sudden expansion. The solution is compared with experiment.Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 35, No. 2, pp. 307–312, August, 1978.  相似文献   

8.
We developed a stable OpenFOAM solver for Immersed Boundary Method based on direct forcing and regularized delta function. The soft-sphere model and a lubrication model were implemented to consider particle–particle collision in a viscous flow. We proposed a fluid–structure interaction (FSI) coupling method to accurately calculate the fluid forcing term and particle velocity. Our solver was validated for fixed and moving bodies, including rotation. The accuracy of various FSI schemes was evaluated in predicting the solid and fluid flow behavior in a viscous flow. It was demonstrated that neglecting or simplifying the fluid momentum change affects the accuracy of the solid velocity and fluid flow dynamic; for higher solid-to-fluid density ratios, a larger deviation was predicted. Furthermore, the FSI schemes highly influenced the behavior of the formed vortices.The solver was validated to predict the effective restitution coefficient of particles in a viscous flow as a function of the Stokes number. We also thoroughly analyzed the dynamic flow behavior of colliding particles through the pressure and velocity field and fluid force. This analysis helped us accurately determine the rebound velocity of particles in case of high Stokes numbers when the effect of viscous force is significant.  相似文献   

9.
In wet granulation processes, a particle adhesion mediated by a liquid bridge is one of the quite important phenomena. In an actual process, the liquid bridge shows dynamic motion due to continuous motion of the particles. Therefore, understanding of the particle adhesion phenomenon by a dynamic liquid bridge is essential to adequately and precisely control wet granulation processes. This study presents a direct numerical simulation of the particle–particle adhesion by a dynamic liquid bridge. Collision of a dry particle and a wet particle was simulated at various collision angles. In particular, translational and rotational motions of the particle at different collision angles were discussed through comparison with a conventional static liquid bridge force model. As a result, it was found that both translational and rotational motions were largely different between simulation results of the direct numerical simulation and static liquid bridge force model, especially at the tangential collision. To understand these results, we focused on the rotational behavior of the particle and deformation of the liquid bridge. It was concluded that the non-slip behavior of the liquid bridge on the particle surface is a key phenomenon for the particle-particle adhesion by the dynamic liquid bridge at the tangential collision.  相似文献   

10.
The motion of a spherical particle in infinite linear flow and near a plane wall, subject to the slip boundary condition on both the particle surface and the wall, is studied in the limit of zero Reynolds number. In the case of infinite flow, an exact solution is derived using the singularity representation, and analytical expressions for the force, torque, and stresslet are derived in terms of slip coefficients generalizing the Stokes–Basset–Einstein law. The slip velocity reduces the drag force, torque, and the effective viscosity of a dilute suspension. In the case of wall-bounded flow, advantage is taken of the axial symmetry of the boundaries of the flow with respect to the axis that is normal to the wall and passes through the particle center to formulate the problem in terms of a system of one-dimensional integral equations for the first sine and cosine Fourier coefficients of the unknown traction and velocity along the boundary contour in a meridional plane. Numerical solutions furnish accurate predictions for (a) the force and torque exerted on a particle translating parallel to the wall in a quiescent fluid, (b) the force and torque exerted on a particle rotating about an axis that is parallel to the wall in a quiescent fluid, and (c) the translational and angular velocities of a freely suspended particle in simple shear flow parallel to the wall. For certain combinations of the wall and particle slip coefficients, a particle moving under the influence of a tangential force translates parallel to the wall without rotation, and a particle moving under the influence of a tangential torque rotates about an axis that is parallel to the wall without translation. For a particle convected in simple shear flow, minimum translational velocity is observed for no-slip surfaces. However, allowing for slip may either increase or decrease the particle angular velocity, and the dependence on the wall and particle slip coefficients is not necessarily monotonic.  相似文献   

11.
It is shown that the process of stabilizing the motion of a particle in a rotating potential flow takes the form of aperiodic damped oscillations.  相似文献   

12.
徐璇  张斯宏  凡凤仙 《声学技术》2019,38(3):241-247
声凝并是细颗粒物(PM2.5)排放控制的重要技术途径,其通过外加声场作用促进PM2.5发生碰撞凝并,使得颗粒数目减少、粒径增大,从而提高后续除尘装置的效率。对声凝并中颗粒间的相互作用机理,包括同向相互作用、声尾流效应、互辐射压力效应、互散射效应的相关研究进行总结和评述,结合声凝并技术在PM2.5排放控制中的应用,指出已有研究在理论模型和实验观测上存在的问题,进而提出今后的研究应在实验方法上进行创新,发展出能够跟踪微米和亚微米尺度PM2.5颗粒或颗粒团相互作用过程细节信息的实验手段,为理论模型的实验验证提供数据支撑;同时应进一步发展理论模型,从而在模型验证的基础上,充分发挥数值模拟的优势,全面识别声凝并中颗粒间相互作用的动力学行为。  相似文献   

13.
A nonisothermal film flow is considered, which is formed on the inside surface of a conic liquid trap, to the inlet of which a homogeneous flow of monodisperse droplet medium is delivered under conditions of atmosphere-free space. Asymptotic models of steady film flow are constructed and investigated for the conditions of inertial deposition of droplets under the assumption of small relative thickness of film and of the effect of secondary droplets formed upon deposition on the film surface. For a slow flow, the shape of the surface and the parameters of the film are found analytically. A parametric numerical investigation of distributions of velocity, temperature, and film thickness is performed for the general case. The parameters of flow in the inlet section of the offtake channel are found, and the conditions are determined which are required for maintaining a steady-state mode of operation of the drip pan.  相似文献   

14.
Institute of Engineering Mechanics, Academy of Sciences of the Ukraine, Dnepropetrovsk. Translated from Inzhenerno-fizicheskii Zhurnal, Vol. 62, No. 2, pp. 188–194, February, 1992.  相似文献   

15.
Tian C  Li H  Song G  Lin JM 《Analytical chemistry》2006,78(17):6270-6274
A single-channel poly(dimethylsiloxane) microchip was developed for the desorption process monitoring and kinetics studies of a single particle. The microchannel consisting of a narrow section following a relatively wide part enabled particle introduction, transfer, and location. A microinfusion pump was employed to delivery eluting solution at a precise rate. Once the particle contacted with the eluting solution, the solute transferred from particle into eluting solution and would be detected by laser-induced fluorescence or a chemiluminescence detector. Desorption process of a single particle was sensitively monitored. Depending on the desorption curves obtained, kinetics studies were carried out. The sediment desorption process analyses of single resin particles and single active carbon particles were performed.  相似文献   

16.
A longitudinal diffusion model is proposed for planar flow in which the fluid particles and the impurities have different velocities.Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 36, No. 5, pp. 847–853, May, 1979.  相似文献   

17.
《中国粉体技术》2016,(4):13-18
采用计算流体力学(CFD)方法对Stairmand高效旋风分离器气相流场进行数值模拟,获取旋风分离器不同截面上的切向和轴向速度分布,与试验结果进行比较,两者能够较好吻合;采用此方法对直切单双进口旋风分离器颗粒分离的过程进行数值模拟。结果表明:双进口型改善了单进口型流场的不对称性,在进气量相同的条件下,双进口型的切向速度增大,径向速度明显减小,粒径分离效率提高了6%~30%。  相似文献   

18.
An investigation is made into the concentration distribution along the trajectories of nitrogen and helium jets interacting with an air cross flow.Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 49, No. 5, pp. 751–756, November, 1985.  相似文献   

19.
The results of an experimental investigation of the carrier velocity fields in a vertical gas suspension flow are presented, and the development of the shear stress due to interaction between the particles and the channel walls is analyzed.Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 32, No. 5, pp. 860–864, May, 1977.  相似文献   

20.
The electromagnetic interaction of a flat solid surface with a relativistic dipole molecule moving parallel to the surface is studied for the first time. It is demonstrated that the first nonvanishing correction to the stopping force acting upon the particle is proportional to V 2/c 2. In the nonrelativistic limit, the proposed formula coincides with the known result.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号