首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《国际聚合物材料杂志》2012,61(12):1169-1183
ABSTRACT

This article discusses some properties such as tensile properties, chemical and oil resistance, gel content, crystallinity, and morphology of polypropylene (PP)/ethylene-propylene diene terpolymer (EPDM)/natural rubber (NR) blends. Dicumyl peroxide (DCP) was applied as a crosslinking agent. In terms of tensile properties, peroxide vulcanized blend shows higher tensile strength and tensile modulus (stress at 100% elongation, M100) as compared with the unvulcanized blend. The elongation at break of the peroxide vulcanized blend is higher for the blend with NR rich content compared with the EPDM rich content. The improvements in chemical and oil resistance as well as gel content of peroxide vulcanized blends have also proved the formation of crosslinks in the rubber phase. Scanning electron microscopy (SEM) micrographs from the surface extraction of the blends support that the crosslinks have occurred during dynamic vulcanization. Dynamical vulcanization with DCP has decreased the percent crystallinity of blends that can be attributed to the formation of crosslinks in the rubber.  相似文献   

2.
The cure characteristics and physicomechanical properties of natural rubber (standard Nigerian rubber) vulcanizates filled with the fiber of bowstring hemp (Sansevieria liberica) and carbon black were investigated. The results showed that the scorch and cure times decreased, whereas the maximum torques increased, with increasing filler loadings for both bowstring hemp fiber and carbon black filled vulcanizates. The tensile strength of both bowstring hemp fiber and carbon black filled vulcanizates increased to a maximum at a 40 phr filler concentration before decreasing. The elongation at break and rebound resilience decreased, whereas the modulus, specific gravity, abrasion resistance, and hardness increased, with increasing filler contents. The carbon black/natural rubber vulcanizates had higher tensile strength, which was about 1.5 times that of bowstring hemp fiber/natural rubber vulcanizates. This superiority in the tensile strength was probably due to the higher moisture content and larger particle size of the bowstring hemp fiber. However, the bowstring hemp fiber/natural rubber vulcanizates showed superior hardness. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

3.
乙烯基含量对热硫化硅橡胶抗撕裂性能的影响   总被引:2,自引:0,他引:2  
郭建华  曾幸荣  罗昆 《弹性体》2010,20(5):6-10
研究不同乙烯基含量对热硫化硅橡胶的力学性能尤其是抗撕裂性能的影响,采用平衡溶胀法测定硅橡胶的交联密度,研究不同乙烯基含量的硅橡胶并用胶的撕裂强度和交联密度的关系。结果表明,随着硅橡胶乙烯基含量的增大,硅橡胶硫化胶的断裂伸长率减小,300%定伸应力和硬度升高,当乙烯基摩尔分数为0.15%时,撕裂强度和拉伸强度较高。乙烯基摩尔分数为0.15%的硅橡胶和乙烯基摩尔分数为0.06%的硅橡胶并用,当并用比为50/50时,撕裂强度高达45.8 kN/m,乙烯基摩尔分数为0.30%的硅橡胶和乙烯基摩尔分数为0.06%的硅橡胶并用,当并用比为4/96时,撕裂强度可达42.9kN/m。乙烯基摩尔分数为0.30%的硅橡胶和乙烯基摩尔分数为0.15%的硅橡胶并用,并用比对硫化胶的撕裂强度影响不大。高乙烯基含量和低乙烯基含量的硅橡胶并用,有利于使硅橡胶的交联结构由"分散交联"转变为"集中交联",当并用胶的乙烯基摩尔分数在0.15%以内,硅橡胶并用胶的撕裂强度随乙烯基摩尔分数的增加而先增大后降低,而此时并用胶的交联密度与撕裂强度成反比。  相似文献   

4.
Thermoplastic elastomer composites of ethylene vinyl acetate (EVA)/natural rubber (NR) blends filled with palm ash were prepared by melt-mixing using a Haake Rheomix Polydrive R600/610 at 120°C with rotor speed of 50 rpm for 10 minutes. Increase in palm ash loading in composites resulted in increase the value of stabilization toque, Young's modulus and swelling resistance of the composites, but decreased the tensile strength and elongation at break. Scanning electron microscope micrographs revealed that higher filler loading resulted in agglomeration of palm ash in the composites. When smaller particle size of palm ash was used, further improvement in tensile strength, elongation at break, swelling resistance and stabilization torque value were observed.  相似文献   

5.
Thermoplastic elastomers have been prepared by blending polypropylene (PP), natural rubber (NR), and recycle rubber powder (RRP). The blends were melt-mixed using a Brabender Plasticorder torque rheometer at 190°C and 50 rpm. A fixed 70:30 blend ratio (wt%) of PP and rubber was prepared. The effect of partial replacement of NR with RRP at a fixed rubber content (NR+RRP), 30 wt% on mechanical properties, swelling behavior, torque development, and morphological properties of PP/NR/RRP blends was studied. Results show that the tensile strength, Young's modulus, and swelling resistance increase with increasing RRP content in the PP/NR/RRP blends whereas the stabilization torque and elongation at break exhibit opposite trend.  相似文献   

6.
Green composites were obtained by incorporation of short jute fibres in natural rubber matrix using a laboratory two-roll mill. The influence of untreated fibre content (1, 2.5, 5, 7.5 and 10 phr) on the mechanical properties, dynamic mechanical properties, swelling properties was examined. The behaviour of prepared green composites under cyclic compression was also investigated. Fibre dispersion in rubber matrix was studied by scanning electron microscopy. The highest tensile strength (21.1 MPa) and highest tear strength (39.9 N/mm) were found for composites containing 2.5 and 5 phr of short jute fibres, respectively. The results also suggested that increasing fibrous filler content resulted in increasing of tensile moduli 100, 200 and 300 % of elongation and hardness, and decreasing of rebound resilience and abrasion resistance of prepared jute/natural rubber composites. The cyclic compression test showed that increasing the amount of short jute fibres in the rubber matrix is related to increase of the energy dissipated in the composite. The incorporation of short jute fibres into the rubber matrix improves the stiffness of the composites, and it is related to the interaction between fibre surface and rubber matrix. The application of short fibres in higher amounts leads to formation of fibre agglomerates reducing the mobility of the rubber polymer chains. The mentioned agglomerates act as defects in rubber matrix, which caused decreasing of some properties, e.g. relative elongation at break.  相似文献   

7.
短纤维直径对橡胶复合材料性能的影响   总被引:5,自引:0,他引:5  
制备了 3种具有不同直径、相同长径比及其分布的涤纶短纤维增强氯丁橡胶基复合材料。对屈服强度及伸长率、断裂强度及伸长率以及撕裂强度等力学性能的研究发现 :在相同长径比及其分布情况下 ,与传统混合法则不同的是屈服强度和伸长率不相等 ,也不是只取决于短纤维的直径 ,而是受直径和长度的共同作用 ;在相同的纤维体积分数时 ,复合材料的断裂强度基本相同 ,而断裂形变和撕裂强度随纤维直径的减小而增大  相似文献   

8.
Composites based on natural rubber reinforced with mineral (precipitated silica and chalk) and organic (sawdust and hemp) fillers in amount of 50 phr were obtained by peroxide cross-linking in the presence of trimethylolpropane trimethacrylate and irradiated by electron beam in the dose range of 150 and 450 kGy with the purpose of degradation. The composites mechanical characteristics, gel fraction, cross-linking degree, water uptake and weight loss in water and toluene were evaluated by specific analysis. The changes in structure and morphology were also studied by Fourier Transform Infrared Spectroscopy and Scanning Electron Microscopy. Based on the results obtained in the structural analysis, possible mechanisms specific to degradation are proposed. The increasing of irradiation dose to 450 kGy produced larger agglomerated structures, cracks and micro voids on the surface, as a result of the degradation process. This is consistent with that the increasing of irradiation dose to 450 kGy leads to a decrease in crosslinking and gel fraction but also drastic changes in mechanical properties specific to the composites’ degradation processes. The irradiation of composites reinforced with organic fillers lead to the formation of specific degradation compounds of both natural rubber and cellulose (aldehydes, ketones, carboxylic acids, compounds with small macromolecules). In the case of the composites reinforced with mineral fillers the degradation can occur by the cleavage of hydrogen bonds formed between precipitated silica or chalk particles and polymeric matrix also.  相似文献   

9.
The peroxide‐cured natural rubber (NR) was reinforced by in situ polymerization of zinc dimethacrylate (ZDMA). The experimental results showed NR could be greatly reinforced by ZDMA. The tensile strength and the hardness of NR/ZDMA composites increased with the content of ZDMA. The reinforcement mechanism was studied further. Both high crosslinking density provided by ionic crosslinking and strain‐induced crystallization improved the mechanical properties. The crosslinking density was determined by an equilibrium swelling method and the crystallization index was measured by Wide‐angle X‐ray diffraction (WXRD). When the amount of ZDMA was high, the ability of strain‐induced crystallization decreased, due to the strong interactions between the rubber phase and the hard poly‐ZDMA (PZDMA) nanodispersions. At the moment, the increasing ionic crosslinking density made up for the effect of the drop of the strain‐induced crystallization, and played a more important role in the reinforcement. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

10.
Effect of oil palm empty fruit bunch (OPEFB) fiber and poly(methyl acrylate) grafted OPEFB on several mechanical properties of poly(vinyl chloride)/epoxidized natural rubber (PVC/ENR) blends were studied. The composites were prepared by mixing the fiber and the PVC/ENR blends using HAKEE Rheomixer at the rotor speed of 50 rpm, mixing temperature 150°C, and mixing period of 20 min. The fiber loadings were varied from 0 to 30% and the effect of fiber content in the composites on their ultimate tensile strength (UTS), Young's modulus, elongation at break, flexural modulus, hardness, and impact strength were determined. An increasing trend was observed in the Young's modulus, flexural modulus, and hardness with the addition of grafted and ungrafted fiber to the PVC/ENR blends. However the impact strength, UTS, and elongation at break of the composites were found to decrease with the increase in fiber loading. An increase in elongation at break and UTS and decrease in the flexural and Young's modulus was observed with the addition of PMA‐g‐OPEFB fiber compared to ungrafted fiber. This observation indicates that grafting of PMA onto OPEFB impart some flexibility to the blend. The morphology of cryogenically fractured and tensile fracture surfaces of the composites, examined by a scanning electron microscope shows that the adhesion between the fiber and the matrix is improved upon grafting of the OPEFB fiber. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

11.
Blend rubber films were prepared by mixing styrene grafted rubber latex and natural rubber latex (NRL) with varying proportions by gamma radiation from Co-60 source at room temperature. Tensile strength, modulus at 500% elongation, elongation at break, permanent set, and swelling ratio were measured. Tensile strength and modulus at 500% elongation attain maximum at 8 kGy radiation dose for blend rubber films. The increase in tensile strength is insignificant, but modulus increases from 5.61 to 7.46 MPa with increased proportion of grafted rubber latex from 40 to 70% in the blend at this radiation dose. Elongation at break, permanent set, and swelling ratio of blend rubber decreases with increase in radiation dose as well as proportion of grafted rubber.  相似文献   

12.
采用不同量的高乙烯基聚丁二烯橡胶(HVBR)作为助交联剂,以过氧化二异丙苯引发交联四丙氟橡胶(FEPM),制备具有新型交联结构的FEPM/HVBR共混胶,同时表征该橡胶的硫化特性、物理性能、断面形貌、溶胀度和热性能。结果表明:随着HVBR用量的增大,共混胶的硬度和拉伸强度增大,拉断伸长率降低,加工安全性和流动性变优;共混胶的玻璃化温度与FEPM接近,且随着HVBR用量的增大,共混胶的玻璃化温度升高,耐热性能提高。  相似文献   

13.
Mixing torque, morphology, tensile properties and swelling studies of natural rubber/ethylene vinyl acetate copolymer blends were studied. Two series of unvulcanized blends, natural rubber/ethylene vinyl acetate (SMRL/EVA) copolymer blend and epoxidized natural rubber (50% epoxidation)/ethylene vinyl acetate (ENR-50/EVA) copolymer blend were prepared. Blends were prepared using a laboratory internal mixer, Haake Rheomix polydrive with rotor speed of 50 rpm at 120°C. Results indicated that mixing torque value and stabilization torque value in ENR-50 blends are lower than SMRL blends. The process efficiency of ENR-50/EVA blends is better due to less viscous nature of the blend compared to SMRL/EVA blends as indicated in stabilization torque graph. Tensile properties like tensile strength, M100 (modulus at 100% elongation) and E b (elongation at break) increase with increasing EVA fraction in the blend. At the similar blend composition, ENR-50 blend shows better tensile properties than SMRL blends. In oil resistance test, swelling percentage increased with immersion time and rubber composition. At a similar immersion time, ENR-50 blends exhibit better oil resistance compared to SMRL blends. Scanning electron microscopy (SEM) of tensile fractured surface indicated that EVA/ENR-50 blends need higher energy to cause catastrophic failure compared to EVA/SMRL blends. In etched cryogenically fractured surface, size and distribution of holes due to extraction of rubber phase by methyl ethyl ketone (MEK) were studied and holes became bigger as rubber composition increased due to coalescence of rubber particle.  相似文献   

14.
The effects of dynamic vulcanization on the process development and some properties, such as tensile properties, swelling index, gel content, crystallinity, and morphology, of the polypropylene (PP)/ethylene-propylene diene terpolymer (EPDM)/natural rubber (NR) blends were investigated. Dynamically vulcanized blends show higher stabilization torque than unvulcanized blends. In terms of tensile properties, the tensile strength and tensile modulus (stress at 100% elongation, M100) of the vulcanized blends have been found to increase as compared with the unvulcanized blends, whereas the elongation at break is higher in the blend with richer EPDM content. These results can be attributed to the formation of cross-linking in the rubber phase. The formation of cross-links in the rubber phase has also been proved by swelling index and gel content. The percentage of crystallinity of the blends is decreased by dynamic vulcanization. Scanning electron microscopy (SEM) micrographs from the surface extraction of the blends support that the cross-links occurred during dynamic vulcanization.  相似文献   

15.
The effects of natural (MT) and organically modified (O‐MT) montmorillonite clays on the properties of polydimethylsiloxane (PDMS) rubber were evaluated. Rubber composites with different clay contents were prepared by a compounding procedure in an open two‐roll mill, which was followed by a compression‐molding step in which the PDMS matrix was peroxide crosslinked. The clay rubber composites were characterized by swelling measurements in toluene, thermogravimetric analyses, X‐ray diffraction, scanning electron microscopy, and tensile tests. The introduction of MT restricted the solvent swelling and increased the crosslinking density of the rubber, which indicated the formation of a covalent filler–matrix interface. The enhanced interaction between MT and PDMS reduced the aggregation size of MT particles in the MT composites and promoted an increase in the separation of the clay layers. When the rubber was filled with O‐MT, a higher solvent amount was incorporated in the material, and this trend increased with the clay content. Moreover, the low interaction between O‐MT and the PDMS chains resulted in larger clay aggregates in the O‐MT composites compared to those with MT. Despite the different interface natures, both clays enhanced thermal stability and acted as reinforcing fillers in relation to Young's modulus and tensile strength. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

16.
Short sisal fiber-reinforced styrene butadiene rubber (SBR) composites were prepared and characterized by the restricted solvent swelling technique. The solvent swelling characteristics of SBR composites containing untreated and bonding agent-added mixes were investigated in a series of aromatic solvents, such as benzene, toluene, and xylene. The diffusion experiments were conducted by the sorption gravimetric method. The adhesion between the rubber and short sisal fibers was evaluated from the restricted equilibrium swelling measurements. The anisotropy of swelling of the composite was confirmed by this study. The effect of fiber orientation in controlling the anisotropy of restricted swelling was also demonstrated. As the fiber content increased, the solvent uptake decreased, due to the increased hindrance and good fiber-rubber interactions. Bonding agent-added mixes showed enhanced restriction to swelling, due to the strong interfacial adhesion. The bonding system containing hexa-resorcinol in the mix produces an in-situ resin, which binds the fiber and the rubber matrix firmly. In addition, as the penetrant size increases from benzene to xylene, the uptake decreases. The swelling index values of the composites support this observation. Due to the improved adhesion between the short sisal fiber and SBR, the ratio of the volume fraction of rubber in the dry composite sample to the swollen sample (V T) decreases. The extent of fiber orientation of the composites was also analysed from the restricted swelling method. SEM studies of the composite revealed the orientation of short fibers. The sorption data support the Fickian diffusion trend, which is typical in the case of cross-linked rubbers.  相似文献   

17.
Acrylonitrile butadiene rubber (NBR)‐based composites were prepared by incorporating short nylon fibers of different lengths and concentration into the matrix using a two‐roll mixing mill according to a base formulation. The curing characteristics of the samples were studied. The influence of fiber length, loading, and rubber crosslinking systems on the properties of the composites was analyzed. Surface morphology of the composites has been studied using Scanning Electron Microscopy (SEM). Addition of nylon fiber to NBR offers good reinforcement, and causes improvement in mechanical properties. A fiber length of 6 mm was found to be optimum for the best balance of properties. It has been found that at higher fiber loadings, composites show brittle‐type behavior. Composites vulcanized by the dicumyl peroxide (DCP) system were found to have better mechanical properties than that by the sulfur system. The swelling behavior of the composites in N,N‐dimethyl formamide has been analyzed for the swelling coefficient values. Composites vulcanized in the DCP system were found to have higher rubber volume fraction than that in the sulfur system, which indicates better rubber–fiber interaction in the former. The crosslink densities of various composites were also compared. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 1023–1030, 2004  相似文献   

18.
《Polymer Composites》2017,38(6):1215-1220
The mechanical properties of ultra‐high molecular weight polyethylene (UHMWPE) fibers reinforced natural rubber (NR) composites were determined, and the effects of fiber surface treatment and fiber mass fraction on the mechanical properties of the composites were investigated. Chromic acid was used to modify the UHMWPE fibers, and the results showed that the surface roughness and the oxygen‐containing groups on the surface of the fibers could be effectively increased. The NR matrix composites were prepared with as‐received and chromic acid treated UHMWPE fibers added 0–6 wt%. The treated UHMWPE fibers increased the elongation at break, tear strength, and hardness of the NR composites, especially the tensile stress at a given elongation, but reduced the tensile strength. The elongation at break increased markedly with increasing fiber mass fraction, attained maximum values at 3.0 wt%, and then decreased. The tear strength and hardness exhibited continuous increase with increasing the fiber content. Several microfibrillations between the fiber and NR matrix were observed from SEM images of the fractured surfaces of the treated UHMWPE fibers/NR composites, which meant that the interfacial adhesion strength was improved. POLYM. COMPOS., 38:1215–1220, 2017. © 2015 Society of Plastics Engineers  相似文献   

19.
The natural fibers (banana, hemp, and sisal) and high density polyethylene were taken for the preparation of natural fiber/polymer composites in different ratios of 40 : 60 and 45 : 55 (w/w). These fibers were esterified with maleic anhydride (MA) and the effect of esterification of MA was studied on swelling properties in terms of absorption of water, at ambient temperature, and steam. It was found that the steam penetrates more within lesserperiod of time than water at ambient temperature. Untreated fiber composites show more absorption of steam and water in comparison to MA‐treated fiber composites. The more absorption of water was found in hemp fiber composites and less in sisal fiber composites. Steam absorption in MA‐treated and untreated fiber composites are higher than the water absorption in respective fiber composites. The natural fiber/polymer composites containing low amount of fibers show less absorption of steam and water at ambient temperature than the composites containing more amount of fibers in respective fiber composites. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

20.
The loop tack, peel, and shear strength of crosslinked natural rubber adhesive were studied using coumarone‐indene and toluene as the tackifying resin and solvent, respectively. The concentration of benzoyl peroxide‐the crosslinking agent—was varied from 1 to 4 parts per hundred parts of rubber (phr). A SHEEN hand coater was used to coat the adhesive on the polyethylene terephthalate substrate at various coating thickness. Loop tack, peel, and shear strength were measured by a Llyod adhesion tester operating at 30 cm min?1. Result shows that loop tack and peel strength of the adhesive increases up to 2 phr of benzoyl peroxide concentration after which it decreases with further benzoyl peroxide content. This observation is attributed to the optimum crosslinking of natural rubber where optimum cohesive and adhesive strength occurs at 2 phr peroxide loading. However, for the shear strength, it increases with increasing benzoyl peroxide concentration where higher rate of increase is observed after 2 phr of peroxide content, an observation which is associated to the steady increase in cohesive strength of crosslinked rubber. In all cases, the adhesion properties of adhesives increase with increase in coating thickness. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号