首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The objective of the present work was to synthesize interpenetrating networks (IPNs) of acrylic acid/polyvinyl alcohol (AA/PVA) by free radical polymerization using N,N-methylenebisacrylamide (MBAAm) and glutaraldehyde as cross-linkers. The IPNs were evaluated for swelling, diffusion coefficient and network parameters by using Flory–Huggins theory, i.e., the average molecular weight between cross-links (M c), polymer volume fraction in swollen state (V 2,s), number of repeating units between cross-links (M r) and cross-linking density (N). It was found that the degree of swelling of AA/PVA interpenetrating network increases greatly within the pH range 5–7 depending on composition. The gel fraction and porosity increased by increasing the concentration of AA or PVA, while by increasing the degree of cross-linking, porosity decreased and gel fraction increased. Selected samples were loaded with chlorpheniramine maleate as a model drug. Drug release was studied in USP, hydrochloric acid buffer solution of pH 1.2 and phosphate buffer solutions of pH 5.5 and 7.5. Drug release data were fitted into various kinetics models, e.g., zero-order, first-order, Higuchi and Peppas models. The results of the kinetics investigation showed that the drug release from IPNs followed non-Fickian diffusion. Fourier transform infrared spectra confirmed the formation of cross-linked IPNs as there was a shifting to lower frequency of 1,713–1,718 cm?1 with reduced intensity, while scanning electron microscopy revealed uniform distribution of drug in IPNs.  相似文献   

2.
Poly(vinyl alcohol) (PVA)/sodium alginate (SA) blend hydrogels have immense potential for use as functional biomaterials. Understanding of influences of processing parameters and compositions on mechanical and swelling properties of PVA/SA blend hydrogels is very important. In this work, PVA/SA blend hydrogels with different SA contents were prepared by applying freeze–thaw method first to induce physical crosslinking of PVA chains and then followed by Ca2+ crosslinking SA chains to form interpenetrating networks of PVA and SA. The effects of number of freeze–thaw cycles, SA content and Ca2+ concentration on mechanical properties, swelling kinetics, and pH‐sensitivity of the blend hydrogels were investigated. The results showed that the blend hydrogels have porous sponge structure. Gel fraction, which is related to crosslink density of the blend hydrogels, increased with the increase of freeze–thaw cycles and strongly depended on SA content. The SA content exerts a significant effect on mechanical properties, swelling kinetics, and pH‐sensitivity of the blend hydrogels. The number of freeze–thaw cycles has marked impact on mechanical properties, but no obvious effect on the pH‐sensitivity of the PVA/SA blend hydrogels. Concentration of CaCl2 aqueous solution also influences mechanical properties and pH‐sensitivity of the blend hydrogel. By altering composition and processing parameters such as freeze–thaw cycles and concentration of CaCl2 aqueous solution, the mechanical properties and pH‐sensitivity of PVA/SA blend hydrogels can be tightly controlled. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

3.
BACKGROUND: Blended hydrogels are widely applied in medical fields. They can provide many advantages, such as biocompatibility and biodegradability. Many materials and methods are used to obtain blended hydrogels. In this work, carboxymethyl chitosan (CMCS) and poly(vinyl alcohol) (PVA) blended hydrogels were prepared using the freezing and thawing technique. The properties of the hydrogels prepared, i.e. gel fraction, swelling and pH‐responsive behaviors, were investigated. RESULTS: The gel fraction increased with increasing time of freezing and thawing as determined through gravimetric analysis. It was also found that the equilibrium degree of swelling improved obviously due to the addition of CMCS compared to pure PVA hydrogel. The blended hydrogel with composition CMCS/PVA 80/20 (by weight) possessed the highest swelling ratio. The results of the influence of pH values on the swelling behavior showed that minimum swelling ratios of the hydrogels occurred near the isoelectric point of CMCS. Protein release studies were performed under various pH conditions: the release was much slower under acid than under basic conditions. The release showed a burst in the first 15 h and then steadily increased. CONCLUSION: The addition of CMCS can improve the physical properties of pure PVA hydrogels and provide pH sensitivity. It is concluded that PVA hydrogels containing CMCS could be potentially applied as oral delivery systems for protein drugs. Copyright © 2009 Society of Chemical Industry  相似文献   

4.
The pH-responsive swelling and release behaviors of anionic P(MAA-co-EGMA) hydrogel microparticles having various MAA and EG contents were investigated as a biological on–off switch for the design of an intelligent drug delivery system triggered by external pH changes. When DC was used as a dispersion stabilizer, well-dispersed hydrogel microparticles having an average diameter of approximately 4 μm were obtained. There was a drastic change of the equilibrium weight swelling ratio of P(MAA-co-EGMA) hydrogels at a pH of around 5, which is the pK a of PMAA. When the MAA content in the hydrogel increased, the swelling ratio increased at a pH above 5 due to the more electrostatic repulsion between the charged groups of MAA. The P(MAA-co-EGMA) hydrogel microparticles showed a pH-responsive release behavior. At low pH (pH 4.0) small amounts of Rh-B were released while at high pH (pH 6.0) relatively large amounts of Rh-B were released from the hydrogels. The difference in the released amount of Rh-B from the hydrogels between pH 4.0 and 6.0 decreased when the MAA content in the hydrogels decreased, which means that the pH-responsive release behavior of the P(MAA-co-EGMA) hydrogel microparticles is closely related to the pH-responsive swelling property of the hydrogel.  相似文献   

5.
We report on the successful preparation of wet dressings hydrogels based on Chitosan-Poly(N-Vinyl-Pyrrolidone)-Poly(ethylene glycol)-Poly(acrylic acid) and Poly(ethylene oxide) by e-beam cross-linking in weakly acidic media, to be used for rapid healing and pain release of infected skin wounds. The structure and compositions of hydrogels investigated according to sol-gel and swelling studies, network parameters, as well as FTIR and XPS analyses showed the efficient interaction of the hydrogel components upon irradiation, maintaining the bonding environment while the cross-linking degree increasing with the irradiation dose and the formation of a structure with the mesh size in the range 11–67 nm. Hydrogels with gel fraction above 85% and the best swelling properties in different pH solutions were obtained for hydrogels produced with 15 kGy. The hydrogels are stable in the simulated physiological condition of an infected wound and show appropriate moisture retention capability and the water vapor transmission rate up to 272.67 g m−2 day−1, to ensure fast healing. The hydrogels proved to have a significant loading capacity of ibuprofen (IBU), being able to incorporate a therapeutic dose for the treatment of severe pains. Simultaneously, IBU was released up to 25% in the first 2h, having a release maximum after 8 h.  相似文献   

6.
Hydrogels were synthesized from acetic acid lignin by chemical crosslinking with NCO-terminated polyurethane ionomers (IPUI). The swelling ratio of hydrogels increased with pH. The hydrogel prepared at the mass ratio of mAAL/mIPUI: 0.35:1 presented maximum swelling ratio in pH 6.8 buffer solutions. The results of thermogravimetric analysis demonstrated that the thermal stability of the hydrogels is improved by the introduction of lignin. The data of release experiments for ammonium sulfate suggests that the hydrogels can be used as coating materials to prepare a slow-release fertilizer.  相似文献   

7.
pH‐sensitive anionic hydrogels composed of poly(vinyl alcohol) (PVA) and poly(γ‐glutamic acid) (γ‐PGA) were prepared by the freeze drying method and thermally crosslinked to suppress hydrogel deformation in water. The physical properties, swelling, and drug‐diffusion behaviors were characterized for the hydrogels. In the equilibrium swelling study, PVA/γ‐PGA hydrogels shrunk in pH regions below the pKa (2.27) of γ‐PGA, whereas they swelled above the pKa. In the drug‐diffusion study, the drug permeation rates of the PVA/γ‐PGA hydrogels were directly proportional to their swelling behaviors. The cytocompatibility test showed no cytotoxicity of the PVA/γ‐PGA hydrogels for the 3T3 fibroblast cell lines. The results of these studies suggest that hydrogels prepared from PVA and γ‐PGA could be used as orally administrable drug‐delivery systems. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

8.
以N,N-亚甲基双丙烯酰胺(N,N-MBA)为交联剂、过硫酸钾(KPS)为引发剂,采用自由基交联共聚法合成了具有pH敏感性的半互穿网络水凝胶聚丙烯酰胺-co-丙烯酸[P(AAm-co-AA)],通过傅立叶红外光谱、差热分析研究了水凝胶的结构及热稳定性.水凝胶的溶胀研究表明,随着缓冲溶液pH值的增大平衡溶胀率增大;在不同...  相似文献   

9.
A novel slow release fertilizer hydrogel nanocomposite was prepared via free radical polymerization of sodium alginate, acrylic acid, acrylamide, and clinoptilolite using N, N?-methylene bisacrylamide as a crosslinker and ammonium persulfate as an initiator. Evidence of grafting and component interactions was obtained by a comparison of the Fourier transform infrared spectra of the initial substrates and hydrogel without clinoptilolite with that of the hydrogel nanocomposite containing clinoptilolite. The swelling behavior of both hydrogels in solutions of various pHs (2-12) and various saline solutions such as NaCl, KCl, CaCl2 and FeCl3 as well as swelling kinetics were investigated. Results showed that the swelling of hydrogels depends on the solution pH value. Also, the swelling of both hydrogels in all salt solutions is significantly lower than that of the values in distilled water. After those characterizations, the potential application was verified through sorption and fertilizer releasing from the hydrogel with and without clinoptilolite zeolite. The presence of the clinoptilolite zeolite in the hydrogel caused the system to liberate the nutrient in a more controlled manner than that with the neat hydrogel. The results of the fertilizer release of hydrogel nanocomposite were also encouraging in order to find applications in agriculture. Consequently, the good slow release fertilizer property as well as the good water adsorption capacity showed that this formulation is potentially viable to be used in agriculture as a nutrient carrier vehicle.  相似文献   

10.
Hydrogels composed of etherificated sodium alginate (ESA), sodium acrylic acid (NaAA), and poly (vinyl alcohol) (PVA) were synthesized by aqueous solution polymerization. The effects of reaction variables such as terminal pH, ions, and ionic strength on hydrogel swelling ratio (SR) were determined and compared. SR was influenced strongly by pH and ionic strength. SR increased with increasing pH but tended to decrease with PVA content. At a given ionic strength, SR of ESA/NaAA/PVA hydrogel was dependent on the valence of anion; SR was higher in multivalent anion salt solution than in monovalent anion salt solution, i.e., SRK2SO4 > SRKCl and SRNa2SO4 > SRNaCl. The swelling kinetic of the hydrogels showed Fickian kinetic diffusion in acidic media and non‐Fickian behavior in alkaline media. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

11.
In this study, the swelling behaviour of copolymer hydrogels of N-isopropylacrylamide (NIPAM) and itaconic acid (IA) in response to temperature and pH value of the external media was studied. The equilibrium degree of swelling for PNIPAM and PNIPAM/IA copolymers was greater at 25 °C than at 37 °C. The degree of swelling was low at low pH values. As the degree of ionization increased above the nominal pKa values of IA, the increased hydrophilicity resulted in larger degrees of swelling. At 37 °C, the PNIPAM hydrogel and some copolymers show anomalous swelling behaviour, i.e. the overshooting effect, in buffered solutions of certain pH values. A swelling-deswelling study showed that the deswelling process of the hydrogels was faster then the swelling process. According to dynamic swelling studies, the diffusion exponent and the diffusion coefficient both increase with increasing content of IA.  相似文献   

12.
Konjac glucomannan (KGM) hydrogel has good potential application in food and medical science, although to achieve this, the physical and mechanical properties need further improvement. In this study, graphene oxide (GO) was used to improve the functionality of KGM hydrogel. KGM/GO hydrogels were prepared by freezing the alkaline KGM/GO sols. Rotational rheometer was used to study the rheological properties of different alkaline KGM/GO sols. Fourier transform infrared, Raman, differential scanning calorimetry, thermogravimetric analyses, and scanning electron microscopy were used to evaluate the structure and properties of the hydrogels. In addition, different pH solutions and an in vitro assay were used to study the swelling property and the release behavior of KGM/GO hydrogels, respectively. The result revealed strong hydrogen‐bond interaction between KGM and GO. The incorporation of GO highly improved the gel properties of KGM/GO sol, higher thermal stability, and more compact structure of KGM/GO hydrogels. KGM/GO hydrogels showed better swelling properties in deionized‐distilled water and pH 7.2 PBS. The release of 5‐aminosalicylic acid (5‐ASA) from KGM/GO (KG4) hydrogel was different in various pH media, but the initial burst release effect was very severe. Therefore, incorporation of GO have a good potential in enhancing the properties of KGM hydrogel, but KGM/GO hydrogel is not an ideal carrier for 5‐ASA release. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45327.  相似文献   

13.
Jie Zhang 《Polymer》2009,50(11):2516-198
Dual temperature- and pH-sensitive comb-type grafted cationic hydrogels are successfully synthesized by grafting polymeric chains with freely mobile ends, which are composed of both N-isopropylacrylamide (NIPAM) segments and N,N-dimethylamino ethyl methacrylate (DMAEMA) segments, onto the backbone of crosslinked poly(NIPAM-co-DMAEMA) networks. Equilibrium and dynamic swelling/deswelling properties of the prepared hydrogels responding to pH and/or temperature are investigated. The prepared hydrogels demonstrate a lower critical solution temperature (LCST) at about 34 °C and a pKa value at about pH 7.3. At lower pH and lower temperature, both the swelling degree and the swelling rate of the comb-type grafted hydrogel are larger than those of the normal-type crosslinked hydrogel. The comb-type grafted poly(NIPAM-co-DMAEMA) hydrogel exhibits a more rapid deswelling rate than that of the normal-type hydrogel in response to a pH jump from 2.0 to 11.0 at a fixed temperature. The volume changes of the poly(NIPAM-co-DMAEMA) hydrogels are acute in a series of fixed buffer solutions with an abrupt increase of environmental temperature from 18 °C to a temperature higher than the LCST. The comb-type grafted poly(NIPAM-co-DMAEMA) hydrogels show quite fast shrinking behaviors in response to simultaneous dual temperature and pH stimuli. Drug-release in vitro from the prepared poly(NIPAM-co-DMAEMA) hydrogels is carried out when the environmental temperature and pH are changed synchronously. The results show that the model drug Vitamin B12 is released much more rapidly from the comb-type grafted hydrogel than that from the normal-type hydrogel. The proposed dual temperature/pH-sensitive comb-type grafted cationic poly(NIPAM-co-DMAEMA) hydrogel in this study may find various potential applications, e.g., for fabricating rapid-response smart sensors, actuators, and chemical/drug carriers and so on.  相似文献   

14.
Polyvinyl alcohol/polyvinyl pyrrolidone (PVA/PVP) hydrogel has been prepared by using γ-irradiation technique. In the present study the conclusion on miscibility of PVA/PVP blends, confirmed qualitatively and quantitatively by using Fourier transform infrared spectroscopy and differential scanning calorimetry, respectively. PVA and PVP are found to form a thermodynamically miscible pair. The physical properties such as gel fraction and water absorption performance of the prepared hydrogels were measured, it was found that the gel fraction increases with increasing irradiation dose while the swelling of PVA/PVP blended hydrogels nearly tends to increase with increasing PVP content and reduced with enhanced irradiation doses. The hydrogel pore structure of various PVA/PVP compositions were tested with SEM. Ability of PVA/PVP hydrogels to absorb and release antimicrobial compounds was tested using amoxicillin as an antibacterial and ketoconazole as an antifungal. Antimicrobial activity of PVA/PVP hydrogels was examined using four bacteria, and four fungi. No antibacterial or antifungal activities of non-loaded PVA/PVP of various compositions were detected while the loading ones found to have antimicrobial activity. Results showed resistance of Pseudomonas aeruginosa and Candida albicans to PVA/PVP, while Bacillus subtilis was very sensitive. Biodegradation of PVA/PVP hydrogels was investigated by burial method in two types of local soils (clay and sandy soils). The highest degradation rate was found to be achieved using clay soil. Also, effect of irradiation dose on its biodegradability was tested. The results showed that the radiation prepared PVA/PVP hydrogels can be use as biomaterials.  相似文献   

15.
Hydrogels composed of poly(vinyl alcohol) (PVA) and carboxymethyl chitosan (CMCh) were synthesized via ultraviolet (UV) irradiation that can be used in several industrial fields. Several analysis tools were used to characterize the physical and thermal properties of CMCh/PVA hydrogels namely FT‐IR, scanning electron microscope (SEM), XRD, thermogravimetric analysis (TGA), and differential scanning calorimetery (DSC). TGA results showed that CMCh/PVA hydrogels are thermally more stable than CMCh and their thermal stability increases as PVA content increases in the hydrogel. Also, DSC results showed that CMCh/PVA hydrogels are at least partial miscible blends. Moreover, the swelling behavior of the CMCh/PVA hydrogels was studied in different buffered solutions and in different salt solutions at various concentrations. CMCh/PVA hydrogels swell much more than CMCh especially at alkaline pH. Both metal and dye uptake were studied for CMCh/PVA hydrogels. The hydrogels adsorb much more dyestuff and metal ions like Cu2+, Cd2+, and Co2+ than CMCh itself. Much dyestuff and metal ions are adsorbed by the hydrogels as PVA content increases in the hydrogel. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

16.
《Ceramics International》2023,49(10):15680-15688
Polyvinylalcohol/chitosan (PVA/CS) is an excellent dual-network hydrogel material, but some significant challenges remain in fabricating composites with specific structures. In this study, 3D gel printing (3DGP) combined with a water-level controlled crosslinker bath was proposed for the rapid in-situ prototyping of PVA/CS/Fe3O4 magnetic hydrogel scaffolds. Specifically, the PVA/CS/Fe3O4 hydrogels were extruded into the crosslinker water to achieve rapid in-situ gelation, improving the printability of hydrogel scaffolds. The effect of the PVA/CS ratio on the rheological and mechanical properties of dual-network magnetic hydrogels was evaluated. The printing parameters were systematically optimized to facilitate the coordination between the crosslinking water bath and printer. The different crosslinking water baths were investigated to improve the printability of PVA/CS/Fe3O4 hydrogels. The results showed that the printability of the sodium hydroxide (NaOH) crosslinker was significantly better than that of sodium tripolyphosphate (TPP). The magnetic hydrogels (PVA: CS= 1: 1) crosslinked by NaOH had better compressive strength, swelling rate, and saturation magnetization of 1.17 MPa, 92.43%, and 22.19 emu/g, respectively. The MC3T3-E1 cell culture results showed that the PVA/CS/Fe3O4 scaffolds promoted cell adhesion and proliferation, and the scaffolds crosslinked by NaOH had superior cytocompatibility. 3DGP combined with a water-level controlled crosslinker bath offers a promising approach to preparing magnetic hydrogel materials.  相似文献   

17.
Li-Gui Chen  Ren-Xi Zhuo 《Polymer》2005,46(16):6274-6281
In this paper, we reported the synthesis and properties of novel hydrogel systems designed for colon targeted drug delivery. The gels were composed of konjac glucomannan (KGM), copolymerized with acrylic acid (AA) and cross-linked by N,N-methylene-bis-(acrylamide) (MBAAm). The influence of various parameters on the equilibrium swelling ratios of the hydrogels was investigated. The swelling ratio was inversely proportional to the content of MBAAm. It was possible to modulate the degree of swelling of the gels by changing cross-linking density of the polymer. The gels' swelling ratio has sensitive respondence to the environmental pH value variation. The results of degradation test show that the hydrogels retain the enzymatic degradation character of KGM and they can be degraded for 52.5% in 5 days by Cellulase E0240. In vitro release of model drug 5-aminosalicylic acid (5-ASA) was studied in the presence of Cellulase E0240 in pH 7.4 phosphate buffer at 37 °C. The accumulative release percent of 5-ASA reached 95.19% after 36 h and the drug release was controlled by the swelling and degradation of the hydrogels.  相似文献   

18.
A novel drug-delivery carrier, poly(ethylene glycol) methyl ether methacrylate/2-(diethylamino) ethyl methacrylate/bis (2-methacryloxyethyl) disulfide (PEDS) hydrogel, was prepared with poly(ethylene glycol) methyl ether methacrylate (PEGMA) and amine containing 2-(diethylamino)ethyl methacrylate (DMAEMA) monomers and a disulfide-containing cross-linking agent bis(2-methacryloxyethyl) disulfide (DSDMA). The RN(C2H5)2 in poly(2-(diethylamino)ethyl methacrylate) (PDMAEMA) can be protonated in acidic environments, causing the expansion of the polymer network and promotion of drug release. The presence of the biologically available reducing agent glutathione (GSH) induces disulfide bond cleavage in DSDMA, which initiates the expansion of the polymer networks. The inner morphology dependence on redox and pH conditions for PEDS1 hydrogels was revealed. In neutral solutions without GSH, a pore structure with full, thick walls was observed. In acidic or GSH solutions, the pore structure was destroyed, and the pore cell walls were thin or broken. These changes can induce drug release. Drug release studies were also conducted using berberine as a model drug. The drug released from the hydrogels into the supernatant was measured in both GSH and acidic solutions. PEDS1 hydrogels exhibited a substantial enhancement in release rates in acidic solutions or neutral GSH solutions, suggesting the drug release from PEDS hydrogels is redox- and pH-dependent.  相似文献   

19.
The pH‐sensitive swelling and release behaviors of the anionic P(MAA‐co‐EGMA) hydrogels were investigated as a biological on–off switch for the design of an intelligent drug delivery system triggered by external pH changes. There was a drastic change of the equilibrium weight swelling ratio of P(MAA‐co‐EGMA) hydrogels at a pH of around 5, which is the pKa of poly (methacrylic acid) (PMAA). At a pH below 5, the hydrogels were in a relatively collapsed state but at a pH higher than 5, the hydrogels swelled to a high degree. When the molecular weight of the pendent poly(ethylene glycol) (PEG) of the P(MAA‐co‐EGMA) increased, the swelling ratio decreased at a pH higher than 5. The pKa values of the P(MAA‐co‐EGMA) hydrogels moved to a higher pH range as the pendent PEG molecular weight increased. When the feed concentration of the crosslinker of the hydrogel increased the swelling ratio of the P(MAA‐co‐EGMA) hydrogels decreased at a pH higher than 5. In release experiments using Rhodamine B (Rh‐B) as a model solute, the P(MAA‐co‐EGMA) hydrogels showed a pH‐sensitive release behavior. At low pH (pH 4.0) a small amount of Rh‐B was released while at high pH (pH 6.0) a relatively large amount of Rh‐B was released from the hydrogels. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

20.
The bound water fraction (XBW) of a newly‐ developed pH‐sensitive, biodegradable chitosan‐polyvinyl alcohol (PVA) hydrogel crosslinked with glutaraldehyde (GA) was investigated as a function of the chitosan/PVA molar ratio, GA concentration (CGA), and ionization state. Differential scanning calorimetry (DSC) was used to determine the XBW of the initial hydrogel, and of the hydrogel equilibrated in pH 3 and pH 7 buffers. Changes in XBW during swelling and shrinking of hydrogel were also investigated. In the initial state of hydrogel, XBW increased with increasing PVA concentration (CPVA), without being significantly affected by CGA. In the buffer‐equilibrated hydrogels, XBW decreased with increasing CPVA and decreasing CGA. The amount of bound water based on dry mass (CBW) was substantially higher when the hydrogel was in the ionized (swollen) state compared to its unionized counterpart. This may be due to the association of a large quantity of water molecules with ? NH3+ groups of chitosan when the gel swelled in the acidic environment. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 3227–3232, 2006  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号