首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Let \(G = (V,E)\) be a connected graph. The conditional edge connectivity \(\lambda _\delta ^k(G)\) is the cardinality of the minimum edge cuts, if any, whose deletion disconnects \(G\) and each component of \(G - F\) has \(\delta \ge k\) . We assume that \(F \subseteq E\) is an edge set, \(F\) is called edge extra-cut, if \(G - F\) is not connected and each component of \(G - F\) has more than \(k\) vertices. The edge extraconnectivity \(\lambda _\mathrm{e}^k(G)\) is the cardinality of the minimum edge extra-cuts. In this paper, we study the conditional edge connectivity and edge extraconnectivity of hypercubes and folded hypercubes.  相似文献   

3.
Any fuzzy set \(X\) in a classical set \(A\) with values in a complete (residuated) lattice \( Q\) can be identified with a system of \(\alpha \) -cuts \(X_{\alpha }\) , \(\alpha \in Q\) . Analogical results were proved for sets with similarity relations with values in \( Q\) (e.g. \( Q\) -sets), which are objects of two special categories \({\mathbf K}={Set}( Q)\) or \({SetR}( Q)\) of \( Q\) -sets, and for fuzzy sets defined as morphisms from an \( Q\) -set into a special \(Q\) -set \(( Q,\leftrightarrow )\) . These fuzzy sets can be defined equivalently as special cut systems \((C_{\alpha })_{\alpha }\) , called f-cuts. This equivalence then represents a natural isomorphism between covariant functor of fuzzy sets \(\mathcal{F}_{\mathbf K}\) and covariant functor of f-cuts \(\mathcal{C}_{\mathbf K}\) . In this paper, we prove that analogical natural isomorphism exists also between contravariant versions of these functors. We are also interested in relationships between sets of fuzzy sets and sets of f-cuts in an \(Q\) -set \((A,\delta )\) in the corresponding categories \({Set}( Q)\) and \({SetR}( Q)\) , which are endowed with binary operations extended either from binary operations in the lattice \(Q\) , or from binary operations defined in a set \(A\) by the generalized Zadeh’s extension principle. We prove that the resulting binary structures are (under some conditions) isomorphic.  相似文献   

4.
We consider a family of linear control systems \(\dot{x}=Ax+\alpha Bu\) on \(\mathbb {R}^d\) , where \(\alpha \) belongs to a given class of persistently exciting signals. We seek maximal \(\alpha \) -uniform stabilization and destabilization by means of linear feedbacks \(u=Kx\) . We extend previous results obtained for bidimensional single-input linear control systems to the general case as follows: if there exists at least one \(K\) such that the Lie algebra generated by \(A\) and \(BK\) is equal to the set of all \(d\times d\) matrices, then the maximal rate of convergence of \((A,B)\) is equal to the maximal rate of divergence of \((-A,-B)\) . We also provide more precise results in the general single-input case, where the above result is obtained under the simpler assumption of controllability of the pair \((A,B)\) .  相似文献   

5.
We consider discrete-time projective semilinear control systems \(\xi _{t+1} = A(u_t) \cdot \xi _t\) , where the states \(\xi _t\) are in projective space \(\mathbb {R}\hbox {P}^{d-1}\) , inputs \(u_t\) are in a manifold \(\mathcal {U}\) of arbitrary finite dimension, and \(A :\mathcal {U}\rightarrow \hbox {GL}(d,\mathbb {R})\) is a differentiable mapping. An input sequence \((u_0,\ldots ,u_{N-1})\) is called universally regular if for any initial state \(\xi _0 \in \mathbb {R}\hbox {P}^{d-1}\) , the derivative of the time- \(N\) state with respect to the inputs is onto. In this paper, we deal with the universal regularity of constant input sequences \((u_0, \ldots , u_0)\) . Our main result states that generically in the space of such systems, for sufficiently large \(N\) , all constant inputs of length \(N\) are universally regular, with the exception of a discrete set. More precisely, the conclusion holds for a \(C^2\) -open and \(C^\infty \) -dense set of maps \(A\) , and \(N\) only depends on \(d\) and on the dimension of \(\mathcal {U}\) . We also show that the inputs on that discrete set are nearly universally regular; indeed, there is a unique non-regular initial state, and its corank is 1. In order to establish the result, we study the spaces of bilinear control systems. We show that the codimension of the set of systems for which the zero input is not universally regular coincides with the dimension of the control space. The proof is based on careful matrix analysis and some elementary algebraic geometry. Then the main result follows by applying standard transversality theorems.  相似文献   

6.
Replication is a standard technique for fault tolerance in distributed systems modeled as deterministic finite state machines (DFSMs or machines). To correct \(f\) crash or \(\lfloor f/2 \rfloor \) Byzantine faults among \(n\) different machines, replication requires \(nf\) backup machines. We present a solution called fusion that requires just \(f\) backup machines. First, we build a framework for fault tolerance in DFSMs based on the notion of Hamming distances. We introduce the concept of an ( \(f\) , \(m\) )-fusion, which is a set of \(m\) backup machines that can correct \(f\) crash faults or \(\lfloor f/2 \rfloor \) Byzantine faults among a given set of machines. Second, we present an algorithm to generate an ( \(f\) , \(f\) )-fusion for a given set of machines. We ensure that our backups are efficient in terms of the size of their state and event sets. Third, we use locality sensitive hashing for the detection and correction of faults that incurs almost the same overhead as that for replication. We detect Byzantine faults with time complexity \(O(n f)\) on average while we correct crash and Byzantine faults with time complexity \(O(n \rho f)\) with high probability, where \(\rho \) is the average state reduction achieved by fusion. Finally, our evaluation of fusion on the widely used MCNC’91 benchmarks for DFSMs shows that the average state space savings in fusion (over replication) is 38 % (range 0–99 %). To demonstrate the practical use of fusion, we describe its potential application to two areas: sensor networks and the MapReduce framework. In the case of sensor networks a fusion-based solution can lead to significantly fewer sensor-nodes than a replication-based solution. For the MapReduce framework, fusion can reduce the number of map-tasks compared to replication. Hence, fusion results in considerable savings in state space and other resources such as the power needed to run the backups.  相似文献   

7.
For any graph class \(\mathcal{H}\) , the \(\mathcal{H}\) -Contraction problem takes as input a graph \(G\) and an integer \(k\) , and asks whether there exists a graph \(H\in \mathcal{H}\) such that \(G\) can be modified into \(H\) using at most \(k\) edge contractions. We study the parameterized complexity of \(\mathcal{H}\) -Contraction for three different classes \(\mathcal{H}\) : the class \(\mathcal{H}_{\le d}\) of graphs with maximum degree at most  \(d\) , the class \(\mathcal{H}_{=d}\) of \(d\) -regular graphs, and the class of \(d\) -degenerate graphs. We completely classify the parameterized complexity of all three problems with respect to the parameters \(k\) , \(d\) , and \(d+k\) . Moreover, we show that \(\mathcal{H}\) -Contraction admits an \(O(k)\) vertex kernel on connected graphs when \(\mathcal{H}\in \{\mathcal{H}_{\le 2},\mathcal{H}_{=2}\}\) , while the problem is \(\mathsf{W}[2]\) -hard when \(\mathcal{H}\) is the class of \(2\) -degenerate graphs and hence is expected not to admit a kernel at all. In particular, our results imply that \(\mathcal{H}\) -Contraction admits a linear vertex kernel when \(\mathcal{H}\) is the class of cycles.  相似文献   

8.
If the length of a primitive word \(p\) is equal to the length of another primitive word \(q\) , then \(p^{n}q^{m}\) is a primitive word for any \(n,m\ge 1\) and \((n,m)\ne (1,1)\) . This was obtained separately by Tetsuo Moriya in 2008 and Shyr and Yu in 1994. In this paper, we prove that if the length of \(p\) is divisible by the length of \(q\) and the length of \(p\) is less than or equal to \(m\) times the length of \(q\) , then \(p^{n}q^{m}\) is a primitive word for any \(n,m\ge 1\) and \((n,m)\ne (1,1)\) . Then we show that if \(uv,u\) are non-primitive words and the length of \(u\) is divisible by the length \(v\) or one of the length of \(u\) and \(uv\) is odd for any two nonempty words \(u\) and \(v\) , then \(u\) is a power of \(v\) .  相似文献   

9.
Recently, we derived some new numerical quadrature formulas of trapezoidal rule type for the integrals \(I^{(1)}[g]=\int ^b_a \frac{g(x)}{x-t}\,dx\) and \(I^{(2)}[g]=\int ^b_a \frac{g(x)}{(x-t)^2}\,dx\) . These integrals are not defined in the regular sense; \(I^{(1)}[g]\) is defined in the sense of Cauchy Principal Value while \(I^{(2)}[g]\) is defined in the sense of Hadamard Finite Part. With \(h=(b-a)/n, \,n=1,2,\ldots \) , and \(t=a+kh\) for some \(k\in \{1,\ldots ,n-1\}, \,t\) being fixed, the numerical quadrature formulas \({Q}^{(1)}_n[g]\) for \(I^{(1)}[g]\) and \(Q^{(2)}_n[g]\) for \(I^{(2)}[g]\) are $$\begin{aligned} {Q}^{(1)}_n[g]=h\sum ^n_{j=1}f(a+jh-h/2),\quad f(x)=\frac{g(x)}{x-t}, \end{aligned}$$ and $$\begin{aligned} Q^{(2)}_n[g]=h\sum ^n_{j=1}f(a+jh-h/2)-\pi ^2g(t)h^{-1},\quad f(x)=\frac{g(x)}{(x-t)^2}. \end{aligned}$$ We provided a complete analysis of the errors in these formulas under the assumption that \(g\in C^\infty [a,b]\) . We actually show that $$\begin{aligned} I^{(k)}[g]-{Q}^{(k)}_n[g]\sim \sum ^\infty _{i=1} c^{(k)}_ih^{2i}\quad \text {as}\,n \rightarrow \infty , \end{aligned}$$ the constants \(c^{(k)}_i\) being independent of \(h\) . In this work, we apply the Richardson extrapolation to \({Q}^{(k)}_n[g]\) to obtain approximations of very high accuracy to \(I^{(k)}[g]\) . We also give a thorough analysis of convergence and numerical stability (in finite-precision arithmetic) for them. In our study of stability, we show that errors committed when computing the function \(g(x)\) , which form the main source of errors in the rest of the computation, propagate in a relatively mild fashion into the extrapolation table, and we quantify their rate of propagation. We confirm our conclusions via numerical examples.  相似文献   

10.
In this paper, we first uncover a fact that a partial adiabatic quantum search with \(O(\sqrt{N/M})\) time complexity is in fact optimal, in which \(N\) is the total number of elements in an unstructured database, and \(M\) ( \(M\ge 1\) ) of them are the marked ones(one) \((N\gg M)\) . We then discuss how to implement a partial adiabatic search algorithm on the quantum circuit model. From the implementing procedure on the circuit model, we can find out that the approximating steps needed are always in the same order of the time complexity of the adiabatic algorithm.  相似文献   

11.
12.
We show that the category \(L\) - \(\mathbf{Top}_{0}\) of \(T_{0}\) - \(L\) -topological spaces is the epireflective hull of Sierpinski \(L\) -topological space in the category \(L\) - \(\mathbf{Top}\) of \(L\) -topological spaces and the category \(L\) - \(\mathbf{Sob}\) of sober \(L\) -topological spaces is the epireflective hull of Sierpinski \(L\) -topological space in the category \(L\) - \(\mathbf{Top}_{0}\) .  相似文献   

13.
We revisit the problem of finding \(k\) paths with a minimum number of shared edges between two vertices of a graph. An edge is called shared if it is used in more than one of the \(k\) paths. We provide a \({\lfloor {k/2}\rfloor }\) -approximation algorithm for this problem, improving the best previous approximation factor of \(k-1\) . We also provide the first approximation algorithm for the problem with a sublinear approximation factor of \(O(n^{3/4})\) , where \(n\) is the number of vertices in the input graph. For sparse graphs, such as bounded-degree and planar graphs, we show that the approximation factor of our algorithm can be improved to \(O(\sqrt{n})\) . While the problem is NP-hard, and even hard to approximate to within an \(O(\log n)\) factor, we show that the problem is polynomially solvable when \(k\) is a constant. This settles an open problem posed by Omran et al. regarding the complexity of the problem for small values of \(k\) . We present most of our results in a more general form where each edge of the graph has a sharing cost and a sharing capacity, and there is a vulnerability parameter \(r\) that determines the number of times an edge can be used among different paths before it is counted as a shared/vulnerable edge.  相似文献   

14.
The hyper-torus network based on a three-dimensional hypercube was introduced recently. The hyper-torus \(QT(m,n)\) performs better than mesh type networks with a similar number of nodes in terms of the network cost. In this paper, we prove that if \(n\) is even, the bisection width of \(QT(m,n)\) is \(6n\) , whereas it is \(6n+2\) if it is odd. Second, we show that \(QT(m,n)\) contains a Hamiltonian cycle. In addition, its one-to-all and all-to-all broadcasting algorithms are introduced. All of these broadcasting algorithms are asymptotically optimal.  相似文献   

15.
In this paper, we consider a popular model for collaborative filtering in recommender systems. In particular, we consider both the clustering model, where only users (or items) are clustered, and the co-clustering model, where both users and items are clustered, and further, we assume that some users rate many items (information-rich users) and some users rate only a few items (information-sparse users). When users (or items) are clustered, our algorithm can recover the rating matrix with \(\omega (MK \log M)\) noisy entries while \(MK\) entries are necessary, where \(K\) is the number of clusters and \(M\) is the number of items. In the case of co-clustering, we prove that \(K^2\) entries are necessary for recovering the rating matrix, and our algorithm achieves this lower bound within a logarithmic factor when \(K\) is sufficiently large. Extensive simulations on Netflix and MovieLens data show that our algorithm outperforms the alternating minimization and the popularity-among-friends algorithm. The performance difference increases even more when noise is added to the datasets.  相似文献   

16.
The quantum entropy-typical subspace theory is specified. It is shown that any \(\rho ^{\otimes n}\) with von Neumann \(\hbox {entropy}\le h\) can be preserved approximately by the entropy-typical subspace with \(\hbox {entropy}=h\) . This result implies an universal compression scheme for the case that the von Neumann entropy of the source does not exceed \(h\) .  相似文献   

17.
We introduce the informational correlation \(E^{AB}\) between two interacting quantum subsystems \(A\) and \(B\) of a quantum system as the number of arbitrary parameters \(\varphi _i\) of a unitary transformation \(U^A\) (locally performed on the subsystem \(A\) ) which may be detected in the subsystem \(B\) by the local measurements. This quantity indicates whether the state of the subsystem \(B\) may be effected by means of the unitary transformation applied to the subsystem \(A\) . Emphasize that \(E^{AB}\ne E^{BA}\) in general. The informational correlations in systems with tensor product initial states are studied in more details. In particular, it is shown that the informational correlation may be changed by the local unitary transformations of the subsystem \(B\) . However, there is some non-reducible part of \(E^{AB}(t)\) which may not be decreased by any unitary transformation of the subsystem \(B\) at a fixed time instant \(t\) . Two examples of the informational correlations between two parties of the four-node spin-1/2 chain with mixed initial states are studied. The long chains with a single initially excited spin (the pure initial state) are considered as well.  相似文献   

18.
Numerous problems in Theoretical Computer Science can be solved very efficiently using powerful algebraic constructions. Computing shortest paths, constructing expanders, and proving the PCP Theorem, are just few examples of this phenomenon. The quest for combinatorial algorithms that do not use heavy algebraic machinery, but are roughly as efficient, has become a central field of study in this area. Combinatorial algorithms are often simpler than their algebraic counterparts. Moreover, in many cases, combinatorial algorithms and proofs provide additional understanding of studied problems. In this paper we initiate the study of combinatorial algorithms for Distributed Graph Coloring problems. In a distributed setting a communication network is modeled by a graph $G=(V,E)$ of maximum degree $\varDelta $ . The vertices of $G$ host the processors, and communication is performed over the edges of $G$ . The goal of distributed vertex coloring is to color $V$ with $(\varDelta + 1)$ colors such that any two neighbors are colored with distinct colors. Currently, efficient algorithms for vertex coloring that require $O(\varDelta + \log ^* n)$ time are based on the algebraic algorithm of Linial (SIAM J Comput 21(1):193–201, 1992) that employs set-systems. The best currently-known combinatorial set-system free algorithm, due to Goldberg et al. (SIAM J Discret Math 1(4):434–446, 1988), requires $O(\varDelta ^2+\log ^*n)$ time. We significantly improve over this by devising a combinatorial $(\varDelta + 1)$ -coloring algorithm that runs in $O(\varDelta + \log ^* n)$ time. This exactly matches the running time of the best-known algebraic algorithm. In addition, we devise a tradeoff for computing $O(\varDelta \cdot t)$ -coloring in $O(\varDelta /t + \log ^* n)$ time, for almost the entire range $1 < t < \varDelta $ . We also compute a Maximal Independent Set in $O(\varDelta + \log ^* n)$ time on general graphs, and in $O(\log n/ \log \log n)$ time on graphs of bounded arboricity. Prior to our work, these results could be only achieved using algebraic techniques. We believe that our algorithms are more suitable for real-life networks with limited resources, such as sensor networks.  相似文献   

19.
In this paper new a posteriori error estimates for the local discontinuous Galerkin (LDG) method for one-dimensional fourth-order Euler–Bernoulli partial differential equation are presented and analyzed. These error estimates are computationally simple and are obtained by solving a local steady problem with no boundary condition on each element. We use the optimal error estimates and the superconvergence results proved in Part I to show that the significant parts of the discretization errors for the LDG solution and its spatial derivatives (up to third order) are proportional to \((k+1)\) -degree Radau polynomials, when polynomials of total degree not exceeding \(k\) are used. These results allow us to prove that the \(k\) -degree LDG solution and its derivatives are \(\mathcal O (h^{k+3/2})\) superconvergent at the roots of \((k+1)\) -degree Radau polynomials. We use these results to construct asymptotically exact a posteriori error estimates. We further apply the results proved in Part I to prove that, for smooth solutions, these a posteriori LDG error estimates for the solution and its spatial derivatives at a fixed time \(t\) converge to the true errors at \(\mathcal O (h^{k+5/4})\) rate. We also prove that the global effectivity indices, for the solution and its derivatives up to third order, in the \(L^2\) -norm converge to unity at \(\mathcal O (h^{1/2})\) rate. Our proofs are valid for arbitrary regular meshes and for \(P^k\) polynomials with \(k\ge 1\) , and for periodic and other classical mixed boundary conditions. Our computational results indicate that the observed numerical convergence rates are higher than the theoretical rates. Finally, we present a local adaptive procedure that makes use of our local a posteriori error estimate.  相似文献   

20.
We consider the \(k\) -strong conflict-free ( \(k\) -SCF) coloring of a set of points on a line with respect to a family of intervals: Each point on the line must be assigned a color so that the coloring is conflict-free in the following sense: in every interval \(I\) of the family there are at least \(k\) colors each appearing exactly once in \(I\) . We first present a polynomial-time approximation algorithm for the general problem; the algorithm has approximation ratio 2 when \(k=1\) and \(5-\frac{2}{k}\) when \(k\ge 2\) . In the special case of a family that contains all possible intervals on the given set of points, we show that a 2-approximation algorithm exists, for any \(k \ge 1\) . We also provide, in case \(k=O({{\mathrm{polylog}}}(n))\) , a quasipolynomial time algorithm to decide the existence of a \(k\) -SCF coloring that uses at most \(q\) colors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号