首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A comparing of urea hydrolysis and NH3 volatilization from urea supergranules and urea calcium nitrate (UCN, a new fertilizer produced by Norsk Hydro A/S, Norway) was made on two different flooded soil types, a high-CEC clay loam (Ås) and an intermediate-CEC clay loam (Kinn).Nitrogen loss by ammonia volatilization was reduced from 17% by surface application of urea supergranules (USG) on flooded Ås soil to 3% and 6% by UCN briquettes at either the same urea or nitrogen concentration as USG. A significant reduction was even found with the surface application of prilled UCN, 12% and 18% N-loss for prilled UCN and urea, respectively. The floodwater pH and NH 4 + content was lower with UCN than urea, which reduced the potential for ammonia volatilization.NH3-loss (5%) was significantly less when USG was surface applied on Kinn soil, while NH3-loss from UCN briquettes was independent of soil type. The reduction in NH3-loss from USG on Kinn soil was due to a decrease in the pH and NH 4 + content of the floodwater caused by a reduced rate of urea hydrolysis.The rate of urea hydrolysis was lower with UCN than USG in both soils, but the difference between UCN and USG was greater in the Ås soil than in the Kinn soil. Three days after deep placement (10 cm), 18% of UCN urea and 52% of USG urea were hydrolyzed in Ås soil, while only 12% UCN and 17% USG were hydrolyzed in the Kinn soil.The surface application of USG on flooded soil reduced the rate of urea hydrolysis as compared to deep placement. 30% and 17% of USG urea was hydrolyzed after four days on Ås and Kinn soil, respectively. During the first few days the rate of hydrolysis of UCN was more affected by the soil type than the application method. Four days after surface application 32% and 13% UCN urea was hydrolyzed on Ås and Kinn soil, respectively. The rate of urea hydrolysis exhibited a zero-order reaction when USG and UCN-briquettes were point placed in flooded soils.  相似文献   

2.
Triticum aestivumThe fate of fertilizer nitrogen applied to dryland wheat was studied in the greenhouse under simulated Mediterranian-type climatic conditions. Wheat, L., was grown in 76-cm-deep pots, each containing 50–70 kg of soil, and subjected to different watering regimes. Two calcareous clay soils were used in the experiments, Uvalde clay (Aridic Calciustoll) and Vernon clay (Typic Ustochrept). Fertilizer nitrogen balance studies were conducted using various15N-labeled nitrogen sources, including ammonium nitrate, urea, and urea amended with urea phosphate, phenyl phosphorodiamidate (a urease inhibitor), and dicyandiamide (a nitrification inhibitor). Wheat yields were most significantly affected by available water. With additional water during the growing period, the recovery of fertilizer nitrogen by wheat increased and the fraction of fertilizer nitrogen remaining in the soil decreased. In the driest regimes, from 40 to 65% of the fertilizer nitrogen remained in the soils. In most experiments the gaseous loss of fertilizer nitrogen, as estimated from unaccounted for15N, was not significantly affected by water regime. The15N not accounted for in the plant and the soil at harvest ranged from 12 to 25% for ammonium nitrate and from 12 to 38% for regular urea. Direct measurement of labeled ammonia loss from soil indicated that ammonia volatilization probably was the main N loss mechanism. Low unaccounted-for15N from nitrate-labeled ammonium nitrate, 4 to 10%, indicated that N losses due to denitrification, gaseous loss from plants, or shedding of anthers and pollen were small or negligible. Amendment of urea with urea phosphate to form a 36% N and 7.3% P product was ineffective in reducing N loss. Dicyandiamide did not reduce N loss from urea presumably because N was not leached from the sealed pots and denitrification was insignificant. Amendment of urea with 2% phenyl phosphorodiamidate reduced N loss significantly. However, band placement of urea at as 2-cm soil depth was more effective in reducing N loss than was amendment of broadcast urea with phenyl phosphorodiamidate.  相似文献   

3.
In situ hydrolysis of broadcast urea occurs in unsaturated soils with different bulk densities. The effect of increasing soil bulk densities on the hydrolysis of urea was studied in open and in covered unsaturated soil columns incubated at 30°C. An increase in bulk density from 0.8 to 1.4 Mg/m3 markedly increased the hydrolysis of surface-applied urea in soils containing water > 6% up to near field capacity. Increased diffusion of urea to sorbed soil urease with an increase in bulk density may have enhanced formation of urease-urea complexes and therefore increased the hydrolysis. As urea diffused farther in more dense soils, the retarding effects of high urea concentration gradients on the hydrolysis probably decreased. In light-textured soils, increases in the bulk density had no apparent effect on the hydrolysis of surface-applied urea when evaporation occurred.  相似文献   

4.
Two modified urea products (urea supergranules [USG] and sulfur-coated urea [SCU]) were compared with conventional urea and ammonium sulfate as sources of nitrogen (N), applied at 58 kg N ha–1 and 116 kg N ha–1, for lowland rice grown in an alkaline soil of low organic matter and light texture (Typic Ustipsamment) having a water percolation rate of 109 mm day–1. The SCU and USG were applied at transplanting, and the whole dose of nitrogen was15N-labeled; the SCU was prepared in the laboratory and was not completely representative of commercial SCU. The SCU was broadcast and incorporated, whereas the USG was point-placed at a depth of 7–8 cm. The urea and ammonium sulfate applications were split: two-thirds was broadcast and incorporated at transplanting, and one-third was broadcast at panicle initiation. All fertilizers except the last one-third of the urea and ammonium sulfate were labeled with15N so that a fertilizer-N balance at flowering and maturity stages of the crop could be constructed and the magnitude of N loss assessed.At all harvests and N rates, rice recovered more15N from SCU than from the other sources. At maturity, the crop recovered 38 to 42% of the15N from SCU and only 23 to 31% of the15N from the conventional fertilizers, urea and ammonium sulfate, whose recovery rates were not significantly different. In contrast, less than 9% of the USG-N was utilized. Fertilizer nitrogen uptake was directly related to the yield response from the different sources. Most of the fertilizer N was taken up by the time the plants were flowering although recovery did increase up to maturity in some treatments.Analysis of the soil plus roots revealed that less than 1% of the added15N was in the mineral form. Between 20 and 30% of the15N applied as urea, SCU, and ammonium sulfate was recovered in the soil plus roots, mainly in the 0–15 cm soil layer. Only 16% of the15N applied as USG was recovered in the soil, and this15N was distributed throughout the soil profile to a depth of 70 cm, which was the lowest depth of sampling.Calculations of the15N balance showed that 46 to 50% of the urea and ammonium sulfate was unaccounted for and considered lost from the system. Only 27 to 38% of the15N applied as SCU was not recovered at maturity, but 78% of the USG application was unaccounted for. The extensive losses and poor plant recovery of USG at this site are discussed in relation to the high percolation rate, which is atypical of many ricegrowing areas.  相似文献   

5.
Relative ammonia volatilization loss from prilled urea, urea supergranule (USG), neem cake-coated urea (NCU), rock phosphate-coated urea (RPCU), gypsum-coated urea (GCU), and prilled urea supplemented with dhaincha (Sesbania aculeata) green manure (Dh + PU) was measured in the fields under different hydrological situations of rice growing. Ammoniacal-N and pH of flood water were less with point placement of USG and Dh + PU treatments than with single basal broadcast applications of urea-based fertilizers. Ammonia collected with an acid trap in an enclosed chamber ranged from 1.47–3.07, 0.24–3.74, 0.80–3.50 and 0.50–1.20% of the applied N in upland, alternate wetting and drying, shallow submergence and intermediate deep water situations, respectively. The collected ammonia was less with point placement of USG at 5 cm depth in all situations and with Dh + PU treatment in shallow submergence than with other sources of N. Single basal broadcast applications of RPCU or NCU resulted in relatively higher loss. The loss from top-dressed urea was less than that from basally applied urea because of larger crop canopy at later stages of crop growth.  相似文献   

6.
Urease activity and inhibition in flooded soil systems   总被引:8,自引:0,他引:8  
Ammonia volatilization is an important mechanism of N loss from flooded rice soils. Inhibition of urease may delay the formation of conditions favorable to NH3 volatilization in the floodwater, thus giving the soil and plant a better chance to compete with the atmosphere as a sink for N. The experiments reported here were designed to identify the site of urea hydrolysis in flooded soils and to attempt selective urease inhibition with some of the inhibitors reported in the literature.Studies with three flooded soils using15N-labeled urea showed that 50–60% of the urea was found in the floodwater, despite incorporation. This floodwater urea is hydrolyzed largely at the soil—floodwater interface and subsequently returns to the floodwater (> 80%) or is retained by the soil (< 20%). Of the following urease inhibitors (K-ethyl-xanthate; 3 amino-1-H-1, 2, 4-triazole; phenylphosphorodiamidate) added at 2% (w/w of urea), only the latter was able to delay the appearance of NH3 (aq) in the flood-water and thus delay NH3 volatilization. Use of an algicide addition to the floodwater depressed NH3 (aq) levels during the entire period studied, but in the presence of PPD the algicide had little additional effect.  相似文献   

7.
Urea-ammonium nitrate (UAN) solution fertilizers are subject to N loss through ammonia (NH3) volatilization. This loss may be reduced by manipulation of the proportion of urea and by use of additives to reduce urea hydrolysis or increase fertilizer solution acidity. This research was design to study the effect of urea proportion in UAN solutions, added ammonium thiosulfate (ATS), and aquechem liquor (an industry by-product) on NH3 loss from N solutions surface-applied to a range of agricultural soils.NH3 volatilization from urea (U), ammonium nitrate (AN), and UAN solutions surface-applied on six eastern Canadian soils was investigated. Ammonia loss from urea solutions ranged from 23 to 55% of the applied N. Increased AN-N in UAN solutions caused a reduction of NH3 loss greater than the reduction in urea. Less volatilization was observed with N solutions of higher acidity. This effect was more pronounced on a sandy soil than on clay soil.When ATS was added to UAN solution, a further reduction of NH3 losses was observed. This reduction ranged from 12 to 23.5% in Dalhousie clay and Ste. Sophie sand soils, respectively. Addition of aquachem liquor (AqL) to the UAN solution did not consistently reduce NH3 loss.Supported by a grant from the Natural Sciences and Engineering Research Council of Canada, and Nitrochem Inc., Canada.  相似文献   

8.
A field experiment was conducted on an acid sulfate soil in Thailand to determine the effect of N fertilization practices on the fate of fertilizer-N and yield of lowland rice (Oryza sativa L.). A delayed broadcast application of ammonium phosphate sulfate (16-20-0) or urea was compared with basal incorporation of urea, deep placement of urea as urea supergranules (USG), and amendment of urea with a urease inhibitor. Deep placement of urea as USG significantly reduced floodwater urea- and ammoniacal-N concentrations following N application but did not reduce N loss, as determined from an15N balance, in this experiment where runoff loss was prevented. The urease inhibitor, phenyl phosphorodiamidate (PPD), had little effect on floodwater urea- and ammoniacal-N, and it did not reduce N loss. The floodwater pH never exceeded 4.5 in the 7 days following the first N applications, and application of 16-20-0 reduced floodwater pH by 0.1 to 0.3 units below the no-N control. The low floodwater pH indicated that ammonia volatilization was unimportant for all the N fertilization practices. Floodwater ammoniacal-N concentrations following application of urea or 16-20-0 were greater on this Sulfic Tropaquept than on an Andaqueptic Haplaquoll with near neutral pH and alkaline floodwater. The prolonged, high floodwater N concentrations on this Sulfic Tropaquept suggested that runoff loss of applied N might be a potentially serious problem when heavy rainfall or poor water control follow N fertilization. The unaccounted-for15N in the15N balances, which presumably represented gaseous N losses, ranged from 20 to 26% of the applied N and was unaffected by urea fertilization practice. Grain yield and N uptake were significantly increased with applied N, but grain yield was not significantly affected by urea fertilization practice. Yield was significantly lower (P = 0.05) for 16-20-0 than for urea; however, this difference in yield might be due to later application of P and hence delayed availability of P in the 16-20-0 treatment.  相似文献   

9.
Urea can be an inefficient N source due to rapid hydrolysis by soil urease leading to NH3 volatilization. The current study investigated the effect of the urease inhibitor phenylphosphorodiamidate (PPD) incorporated at two concentrations (0.5% and 1% w/w) within the fertilizer granule on NH3 volatilization from surface applied urea. The daily rates of NH3 loss from 20 soils of widely differing properties from Northern Ireland were measured over 14 days using ventilated enclosures under simulated spring conditions. Cumulative loss rates were calculated and fitted to a logistic model from which total NH3 loss (Amax) and the time to maximum rate of loss (Tmax) were determined. Stepwise multiple linear regression analysis related the effectiveness of PPD in reducing NH3 volatilization from urea to soil properties.The total cumulative loss of ammonia from unamended urea varied from 0.37 to 29.2% depending on soil type. Ammonia volatilization appeared to be greatest on a soil with a high pH (R2 = 0.65), a low titratable acidity (TA) (R2 = 0.63) and a soil that was drying out (R2 = 0.50). Soil pH was negatively correlated with TA (r = –0.826, P < 0.001) suggesting that soils with a low TA may have received recent lime. Including cation exchange capacity (CEC) and % N as well as pH-KCl in the multiple linear regression equation explained 86% of the variance.The effectiveness of PPD in reducing Amax varied between 0% to 91% depending on soil type, the average over all 20 soils being 30 and 36% for 0.5% and 1% PPD respectively. The most important soil properties influencing the effectiveness of the urease inhibitor were soil pH-H2O and TA accounting for 33% and 29% of the variance respectively. PPD was less effective on a soil with a high pH and low TA. These were the soil conditions that led to high NH3 volatilization from unamended urea and may explain why PPD had limited success in reducing ammonia loss on these soils. Multiple linear regression analysis indicated that 75% of the variation in the % inhibition of NH3 loss by PPD could be significantly accounted for by pH-H2O, initial soil NO 3 - -N concentration, % moisture content and % moisture loss.The delay in Tmax by PPD ranged from 0.19 to 7.93 days, the average over all 20 soils being 2.5 and 2.8 days for 0.5% and 1% PPD respectively. TA, % moisture content, urease activity and CEC were soil properties that significantly explained 83% of the variation in the % delay in Tmax by PPD in multiple linear regression analysis. However, none of these soil properties were significant on their own. As urea hydrolysis occurs rapidly in soil, delaying Tmax under field conditions would increase the chance of rain falling to move the urea below the soil surface and reduce NH3 volatilization. A urease inhibitor should be more effective than PPD on soils with a high pH and low TA to be successful in reducing high NH3 losses.  相似文献   

10.
Split broadcast applications of prilled urea, deep point-placed urea supergranules (USG), and broadcast sulfur-coated urea (SCU) were compared as nitrogen sources for wetland rice (Oryza sativa L.) in two field experiments on a sandy soil (Typic Ustipsamment) with a high percolation rate (approx. 110 mm/day) in the Punjab, India. The USG was consistently less effective than the split urea and averaged 1 ton ha–1 less rice yield at the highest nitrogen rate (116 kg N ha–1). SCU produced the highest grain yields in both experiments; it averaged 1.7 ton ha–1 more than did the split urea at the highest N rate.The fertilisers were then compared in field microplots; percolation was permitted or prevented so that the cause of the poor performance of USG could be elucidated. USG gave higher grain yield and N uptake in microplots that were not leached than in those that were leached. In leached microplots, the grain yields were higher from prilled urea than from USG treatments provided the placement pattern of the USG matched that of the field plots. Yields were not higher from treatments in which the USG were more closely spaced. In microplots in which leaching was prevented, the broadcast prilled urea was less effective than the deep-placed USG, which gave yields approximately 60% greater than those from split urea and the same as those from SCU. Broadcast prilled urea in undrained microplots caused high levels of ammonium (40 ppm) to develop in the floodwater where high pH (8.9) and high alkalinity (4.9 meq l–1) may have led to extensive ammonia volatilisation. The use of USG and SCU in undrained microplots reduced floodwater ammonium levels to less than 3 ppm.Urea and ammonium leaching losses measured in fallow soil columns in the laboratory were much greater from USG than from prilled urea. Leaching losses from SCU were negligible. The data suggest that SCU is the preferred N source for rice soils having a high percolation rate and that USG is a poor alternative to split applications of prilled urea.  相似文献   

11.
In a field experiment ammonia volatilization and yield response were measured when calcium ammonium nitrate (CAN), urea or urea plus 0.5% w/w N-(n-butyl) thiophosphoric triamide (U + NBPT) were surface-applied to an established perennial ryegrass sward. NBPT lowered cumulative NH3 loss from ventilated enclosures over 13 days from 8.1% of the urea N applied to 1.9% and delayed, by approximately 5 days, the time at which maximum loss occurred. Ammonia volatilization from CAN was low being less than 0.1% of the N applied. However, actual NH3 volatilization loss rates were probably underestimated due to the low air exchange rates used in the ventilated enclosures.The relative efficiency of urea compared to CAN was 91.2% in terms of dry matter yield. Recovery of N by difference was 57.2% for urea compared with 68.7% for CAN. NBPT improved the yield performance of urea making the amended fertilizer comparable to that of CAN.  相似文献   

12.
Field experiments were conducted during 1988–1989 at two adjacent sites on an acid sulfate soil (Sulfic Tropaquept) in Thailand to determine the influence of urea fertilization practices on lowland rice yield and N use efficiency. Almost all the unhydrolyzed urea completely disappeared from the floodwater within 8 to 10 d following urea application. A maximum partial pressure of ammonia (pNH3) value of 0.14 Pa and an elevation in floodwater pH to about 7.5 following urea application suggest that appreciable loss of NH3 could occur from this soil if wind speeds were favorable. Grain yields and N uptake were significantly increased with applied N over the control and affected by urea fertilization practices (4.7–5.7 Mg ha–1 in dry season and 3.0–4.1 Mg ha–1 in wet season). In terms of both grain yield and N uptake, incorporation treatments of urea as well as urea broadcasting onto drained soil followed by flooding 2 d later were more effective than the treatments in which the same fertilizer was broadcast directly into the floodwater either shortly or 10 d after transplanting (DT). The15N balance studies conducted in the wet season showed that N losses could be reduced to 31% of applied N by broadcasting of urea onto drained soil and flooding 2 d later compared with 52% loss by broadcasting of urea into floodwater at 10 DT. Gaseous N loss via NH3 volatilization was probably responsible for the poor efficiency of broadcast urea in this study.  相似文献   

13.
Ammonia volatilization loss from mineral N fertilizers was determined on a calcareous Chinese loess soil with a pH (CaCl2) of 7.7. An original in situ method that required no electricity or laboratory analyses was used. By means of a bellows pump, ambient air was drawn through four conical cups placed onto the soil (total area 400 cm2) and subsequently through an NH3-specific detector tube with direct colorimetric indication of the ammonia concentration (measuring range, 0.05–700 vol.-ppm NH3). Duration of measurement was about 3 min. Following N fertilization to winter wheat in 1990 and to summer maize in 1991, the application methods surface broadcast, uniform incorporation into the 0–15-cm layer, and for maize, a point placement at 10 cm depth were investigated. Ammonium bicarbonate and urea were applied at rates of 100 and 200 kg N ha–1. In the autumn of 1990, ammonia losses following NH4HCO3 application were more than twice as large as with urea, fertilizer incorporation reduced NH3 losses 15-fold, and doubling the nitrogen application rate resulted in a 1.7-fold increase in the percentage of nitrogen loss. Cumulative ammonia fluxes were about 2 times higher in the summer of 1991. Comparing application methods in summer, losses were significantly (3 times) lower only with point placement. The above differences were all significant at the P<0.05 level. Due to the very low air exchange rate (0.9 volumes min–1), actual volatilization rates were underestimated by this method. Though not yielding absolute amounts, the Dräger-Tube method proved very suitable for comparing relative differences in ammonia fluxes. The measurements clearly reflected the characteristic flux patterns for the different treatments and the effects of environmental factors on their time course.  相似文献   

14.
Ammonia volatilization, denitrification loss and total nitrogen (N) loss (unaccounted-for N) have been investigated from N fertilizer applied to a calcareous sandy loam fluvo-aquic soil at Fengqiu in the North China Plain. Ammonia volatilization was measured by the micrometeorological mass balance method, denitrification by the acetylene inhibition – soil core incubation technique, and total N loss by 15N-balance technique. Ammonia loss was an important pathway of N loss from N fertilizer applied to rice (30–39% of the applied N) and maize (11–48%), but less so for wheat (1–20%). The amounts of unaccounted-for fertilizer N were in the order of rice > maize > wheat. Deep placement greatly reduced ammonia volatilization and total N loss. Temperature, wind speed, and solar radiation (particular for rice), and source of N fertilizer also affect extent and pattern of ammonia loss. Denitrification (its major gas products are N2 and N2O) usually was not a significant pathway of N loss from N fertilizer applied to maize and wheat. The amount of N2O emission (N2O is an intermediate product from both nitrification and denitrification) was comparable to denitrification loss for maize and wheat, and it was not significant in the economy of fertilizer N in agronomical terms, but it is of great concern for the environment.  相似文献   

15.
Recent research on problems in the use of urea as a nitrogen fertilizer   总被引:3,自引:0,他引:3  
Recent research on the NH3 volatilization, NO 2 - accumulation, and phytotoxicity problems encountered in the use of urea fertilizer is reviewed. This research has shown that the adverse effects of urea fertilizers on seed germination and seedling growth in soil are due to NH3 produced through hydrolysis of urea by soil urease and can be eliminated by addition of a urease inhibitor to these fertilizers. It also has shown that the leaf burn commonly observed after foliar fertilization of soybean with urea results from accumulation of toxic amounts of urea in soybean leaves rather than formation of toxic amounts of NH3 through hydrolysis of urea by leaf urease. It further showed that this leaf burn is accordingly increased rather than decreased by addition of a urease inhibitor to the urea fertilizer applied. N-(n-butyl)thiophosphoric triamide (NBPT) is the most effective compound currently available for retarding hydrolysis of urea fertilizer in soil, decreasing NH3 volatilization and NO 2 - accumulation in soils treated with urea, and eliminating the adverse effects of urea fertilizer on seed germination and seedling growth in soil. NBPT is a poor inhibitor of plant or microbial urease, but it decomposes quite rapidly in soil with formation of its oxon analog N-(n-butyl) phosphoric triamide, which is a potent inhibitor of urease activity. It is not as effective as phenylphosphorodiamidate (PPD) for retarding urea hydrolysis and ammonia volatilization in soils under waterlogged conditions, presumably because these conditions retard formation of its oxon analog. PPD is a potent inhibitor of urease activity but it decomposes quite rapidly in soils with formation of phenol, which is a relatively weak inhibitor of urease activity. Recent studies of the effects of pesticides on transformations of urea N in soil indicate that fungicides have greater potential than herbicides or insecticides for retarding hydrolysis of urea and nitrification of urea N in soil.  相似文献   

16.
The compound N-(n-butyl) thiophosphoric triamide (nBTPT) was tested for its ability to reduce the rate of urea hydrolysis in applications of urea at 10 d after transplanting flooded rice. The rates of urea hydrolysis were relatively slow, and nBTPT caused a 1-d reduction in the rate of disappearance of urea from the floodwater. Despite this, the vapor pressures of ammonia in the floodwater were significantly lower in the plots with nBTPT than without for the first 5 d following the N application. The vapor pressures of ammonia measured in the afternoons indicate that ammonia volatilization losses were considerable from the treatments without nBTPT and low from the treatments with nBTPT. There was no nitrogen response in this wet-season crop, apparently because of the high availability of N in the soil. N conserved from ammonia volatilization losses by use of the inhibitor was apparently susceptible to denitrification loss, and 50% of the fertilizer was lost in the 37 d following the application of15N-labeled urea both with and without the inhibitor.  相似文献   

17.
The recovery of applied nitrogen by rice is low due to several loss processes operating in the ricefields. Split application of fertilizer suggested for increasing nitrogen-use efficiency is often not practical in rainfed lowland rice due to adverse soil–water situations. Hence, the entire required amount of N has to be applied in one single application when the water regime is favorable. A single broadcast application, however, increases N loss. Deep placement of urea supergranules (USG) has been proven to improve N fertilizer efficiency. The placement technology is best suited to conditions where the predominant N loss mechanism is ammonia volatilization rather than leaching or denitrification. Deep placement of USG thus has greater benefit over surface split application on soils with moderate to heavy texture, low permeability and percolation rate, and high cation exchange capacity and pH. Environments and management factors conducive to high ammonia volatilization potential would benefit most from deep-placement technology. Improved N recovery and efficiency of USG has been well-documented for lowland rice, but its market availability and methods to achieve placement pose problems. The technology has very limited adoption because USG is not commercially available or manufactured in most countries, and labor requirement is high with hand placement. Manual application creates more difficulties in handling the granules, besides taking 36–42 more hours per hectare, than 2 split broadcast applications of prilled urea. Applicators developed so far have not worked satisfactorily under standing water conditions and in direct-seeded rice conditions due to hardness of the soil. Hence, it is necessary to develop a suitable applicator to overcome these difficulties. Alternatively, for direct-seeded rice, N-fertilizers can be subsoil-banded near seedrows. The placement technology, if adopted by the farmers of the potential lowland areas in eastern India, is expected to give an additional production of 5.6 million tons of rice.  相似文献   

18.
Ammonia (NH3) volatilization is an important mechanism for nitrogen (N) loss from flooded rice fields following the application of urea into the floodwater. One method of reducing losses is to use a urease inhibitor that retards the hydrolysis of urea by soil urease and allows the urea to diffuse deeper into the soil. The two chemicals that have shown most promise in laboratory and greenhouse studies are phenylphosphorodiamidate [PPD] and N-(n-butyl)thiophosphorictriamide [NBPT], but they seldom work effectively in the field. PPD decomposes rapidly when the pH departs from neutrality, and NBPT must be converted to the oxygen analogue [N-(n-butyl)phosphorictriamide, NBPTO] for it to be effective. Our field studies in Thailand showed that NH3 loss is markedly reduced when PPD is added with the algicide terbutryn. The studies also showed that a mixture of PPD and NBPT was even more effective than either PPD or NBPT alone. It appears that initially PPD inhibited urease activity, and during this time at least part of the NBPT was converted to NBPTO; then as the activity of PPD declined, NBPTO inhibited the hydrolysis of urea. The combined urease inhibitor treatment reduced NH3 loss from 15 to 3% of the applied N, and increased grain yield from 3.6 to 4.1 t ha–1.  相似文献   

19.
Laboratory incubations were conducted to determine the ammonia (NH3) loss from urea as affected by the addition of coarse and ground (fine) pyrites at 1:1, 1:2 and 1:5 urea: pyrite (w/w) ratios and methods of application (surfaceapplication, incorporation and placement). Coarse pyrites (>-2mm) were not effective in reducing NH3 loss from urea when surface applied even at the highest ratio of pyrite (15.9% vs 18.7% without pyrite). Ground pyrites (0.1–0.25 mm), in 1:1 ratio, had about 5% less NH3 loss than the urea alone treatment. Higher ratios of pyrites reduced NH3 loss much more. Ammonia losses were the most with surface-applied urea (18.9%) and the least (13.5%) when placed (2.5 cm) below the soil surface. Addition of ground pyrite to surface-applied urea (1:1 ratio) decreased the loss to 13.2%. Urea+pyrite placed below the soil surface had the least loss (9.8%). Results indicate that combined application of urea and fine pyrite could reduce NH3 loss.  相似文献   

20.
Urea, the most common N source in Asia, is prone to high loss as ammonia when applied to tropical flooded rice (Oryza sativa L.). Chemical or physical modifications of urea could offer potential in reducing ammonia loss. Two field studies were conducted to identify conventional and experimental N-containing sources loss prone to ammonia less than prilled urea. Relative susceptibility to ammonia loss was inferred from equilibrium ammonia vapor pressure, pNH3. For the sources studied, ammonia formation and presumably loss were least for guanylurea sulfate (GUS) and sulfur-coated urea (SCU). The slow mineralization and acidifying effect of GUS resulted in negligible ammonia concentration in the floodwater. Amendment of urea with either 5 or 10% paraformaldehyde (ureaform) reduced pNH3, but never by more than 55%. Coating urea with phosphate rock tended to be less effective than amendment with paraformaldehyde in reducing pNH3. There was no significant difference in the pNH3, and presumably ammonia loss, for urea phosphate (17-44-0), urea-urea phosphate (34-17-0), and urea. About 3 days after fertilization, the floodwater pH tended to become higher with NP sources than with urea. This elevation in pH was apparently due to the stimulation of algal photosynthetic activity by added P, and it may explain the failure of a phosphoric acid amendment to urea (urea phosphate) in reducing pNH3. Ammonia disappearance from broadcast diammonium phosphate (DAP) and ammonium phosphate sulfate (16-20-0) was complete within 3 days after N application, whereas ammonia remained in floodwater for up to 7 days following broadcast application of urea and ammonium sulfate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号