首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 78 毫秒
1.
二次再热系统比一次再热在机组效率和煤耗上优势明显,针对火力发电厂二次再热超超临界机组,介绍了国内外的技术发展和应用情况,通过分析二次再热超超临界机组设计的主要技术难点,进一步探讨了二次再热机组蒸汽参数选择、锅炉设计、汽轮机及热力系统设计的思路。  相似文献   

2.
二次再热超临界机组热力系统热经济性计算模型的研究   总被引:1,自引:0,他引:1  
李建刚  李丽萍  阮涛  石孝民 《汽轮机技术》2005,47(6):425-427,450
以常规热平衡方法和等效热降的基本理论为基础,经过严格的数学推导,建立了既能用于其单位新蒸汽俘功又能用于循环吸热量计算的二次再热超临界机组热力系统通用计算模型,实例计算结果与常规法完全一致,为此类机组热经济性与局部因素的快速准确定量计算奠定了基础,并可应用于其它任何凝汽式火电机组热力系统。  相似文献   

3.
刘杨  郭锋 《江西能源》2014,(1):84-86,92
介绍了国内外超超临界机组的发展状况,由于机组参数的提高受当前材料发展的限制,因此二次再热机组被关注。通过介绍二次再热机组与一次再热机组的区别、国内各大主机设备制造厂二次再热主机的特点,提出机组配置的建议,为机组选型提供参考。  相似文献   

4.
针对国内某1 000 MW超超临界二次再热机组锅炉,进行了不同负荷下锅炉系统的性能研究,构建机组模型并进行仿真模拟。根据■平衡方程,计算了不同负荷下锅炉系统及各部件的■损失和■效率。结果表明:随着负荷的变化,各部件都保持较高的■效率且波动很小,能够保证机组的深度调峰和低负荷稳定运行;燃料燃烧与换热产生的■损失之和占总体■损失的97%,减小工质与高温烟气的传热温差可降低■损失。  相似文献   

5.
以某1 000 MW超超临界二次再热锅炉为例,采用数值模拟与炉膛分区段热力计算相结合的方法,研究了不同负荷下再循环烟气量对炉膛内部温度场、各气体组分的浓度场及NO_x生成的影响。结果表明:引入再循环烟气后,在锅炉最大连续蒸发量(BMCR)负荷下烟气再循环率在0%~15%内每增加5%,可使屏底烟温平均下降约4.7 K,屏底O_2体积分数下降4.1%,CO体积分数上升31.81%,NO体积分数下降6.2%;随着负荷降低,在相同再循环率下,屏底烟温下降幅度增大,屏底O_2体积分数下降幅度和CO体积分数上升幅度均减小。  相似文献   

6.
为了进一步提高效率,节能减排,公司研制了超超临界高参数二次再热汽轮机组。文章主要介绍了公司660MW高参数二次再热汽轮机结构特点,着重阐述了机组技术继承性、安全可靠性、使用性,该机组也将成为国内首个660MW二次再热汽轮机组。  相似文献   

7.
针对二次再热超临界供热机组采用低压缸分缸抽汽供热的特点,利用等效热降理论,进行分析与数学推导,得出了该类型机组抽汽等效热降和抽汽效率的计算方法,形成该类型机组的经济性定量分析数学模型,从而将等效热降理论的应用范围拓展到二次再热供热机组。利用该模型,可以方便、迅速、准确地分析二次再热超临界供热机组热力系统的经济性。  相似文献   

8.
二次再热作为我国"700℃"和美国"AD760"超超临界燃煤发电机组研发的关键技术,而大型机组是电力行业的发展方向。文中详细介绍了我国首个二次再热示范机组锅炉特点,包括总体布置、燃烧系统、点火稳燃系统、水冷壁、组合式高温受热面、再热蒸汽温度调节等系统,为掌握二次再热技术和类似机组建设提供借鉴。  相似文献   

9.
根据1 000 MW超超临界二次再热锅炉设计特点,通过现场试验,分析了运行方式对锅炉主、再热蒸汽温度的影响。研究表明:提高运行O2体积分数是抬升主、再热蒸汽温度的有效方式;配动态分离器的磨煤机,动态分离器转速升高后,煤粉变细且更加均匀,对提高主、再热蒸汽温度有利,控制煤粉细度R90在20%是最优选择;减小一次风量对提高主、再热蒸汽温度无益处;适度的燃尽风(Air-Grade Part,AGP)水平摆角对消除汽温偏差有利,可提高主、再热蒸汽温度;增加各层AGP风量有利于提高主、再热蒸汽温度,但锅炉热效率将下降,需对二者进行平衡,1 000 MW负荷时各层AGP风门开度设置在80%效果较佳;增大偏置辅助风(Concentric Firing System,CFS)风量将增加汽温偏差,不利于主、再热蒸汽温度的提升,但对减弱水冷壁高温腐蚀风险有利,二者也需进行平衡;燃烧器垂直摆角度数增加对提升主、再热蒸汽温度有利,但对汽温偏差有影响,因此需对燃烧器最高垂直摆角度数进行限制,1 000 MW负荷时燃烧器最高垂直摆角宜在70%左右。  相似文献   

10.
构建了超超临界火电机组的热经济性分析和(火用)分析数学模型,并对某台超超临界1 000MW机组开展了热经济性和(火用)分析,该机组全厂热效率为45.75%,而(火用)效率为44.64%.汽轮机高压缸、中压缸、低压缸的(火用)效率分别为94.83%,96.76%和89.82%,均高于其相对内效率.此外,探讨了提高机组节能潜力的措施.  相似文献   

11.
应用扩展型能效分布矩阵分析二次再热机组的热经济性   总被引:2,自引:0,他引:2  
针对现有二次再热机组热经济性分析方法存在的问题,以现代计算手段为依托,经过严格的理论分析和数学推导,导出了适合二次再热机组热力系统热经济性定量分析的扩展型能效分布矩阵方程,使得运用能效分布矩阵方程的火电机组热经济性分析方法更为完整和完善.还通过实例对该方法进行了验证.图1表3参12  相似文献   

12.
阐述了管道热效率在电厂节能中的重要作用,并应用火电厂管道热效率的反平衡计算方法,对辅助蒸汽系统的热经济性作了定量计算,指出了现有管道热效率行业标准的不合理性,对电厂节能提出了积极的建议。图4表3参4  相似文献   

13.
压水堆核电厂二回路系统管道热效率的影响因素分析   总被引:1,自引:0,他引:1  
李勇  彭钒 《汽轮机技术》2012,54(3):165-169,219
在压水堆核电厂热经济性分析中,管道热效率的分析往往不被研究者所重视。首先从管道热效率的定义出发,给出了管道热效率的计算表达式,以及各种管道损失的计算方法。然后针对某些影响管道热效率的因素,同时也对蒸汽动力转换系统循环热效率产生影响的问题,分析了影响管道热效率的因素变化对蒸汽动力转换系统循环热效率和压水堆核电厂全厂热效率的影响。最后,以某990MW核电机组为例,通过计算分析了如主蒸汽管道疏水门泄漏蒸汽、厂用蒸汽、主蒸汽管道散热、蒸汽发生器排污等对管道热效率、蒸汽动力转换系统循环热效率及全厂热效率的影响。结果表明,上述因素变化均导致管道热效率降低和全厂热效率的降低,但不同因素变化对全厂热效率的影响机理却存在较大的差别。  相似文献   

14.
600MW超临界火力发电机组锅炉效率分析   总被引:1,自引:0,他引:1       下载免费PDF全文
采用热平衡和平衡分析方法对电站锅炉系统进行了热平衡和平衡分析,通过实测、计算和分析,得到某电厂锅炉的热效率为92.48%,效率为59.89%,主要热损失为排烟损失和炉体散热损失;主要损失为传热损失和燃烧损失。针对电站锅炉热平衡和平衡中各种损失及其产生的部位,结合某电站锅炉的实际状况,提出了相应的减少有关损失的改进措施,以进一步提高电站锅炉的能源利用率。  相似文献   

15.
针对某火力发电厂2号机组的锅炉热效率、NOx排放及空气预热器漏风率进行了测试,检验锅炉能否达到供货商对其提供产品所作的性能保证值。结果显示其锅炉效率和NOx排放量达到性能保证值,但空气预热器的漏风率略高于其保证值。  相似文献   

16.
基于常规的1 000 MW二次再热机组的设计方案,提出了取消高、中压缸抽汽,采用多级小汽轮机抽汽的双机回热循环(EC-BEST)系统的设计方案,并且通过EES仿真软件对不同工况下EC-BEST系统与常规二次再热系统的抽汽过热度、小汽轮机流量、循环效率和汽轮机热耗率等指标进行对比。结果表明:采用EC-BEST系统可以有效降低抽汽过热度,减少加热器不可逆损失;降低汽轮机热耗约30 kJ/(kW·h),折合煤耗约1. 1 g/(kW·h)(按照锅炉效率94%);循环效率提高0. 3%。因此,EC-BEST二次再热具有更高的经济性,是未来大容量高参数二次再热机组发展的一个良好方案。  相似文献   

17.
以某在建660MW超临界二次再热机组回热加热系统为对象,采用损分布矩阵方程和单耗理论分析了不同负荷下各加热器效率、损和附加煤耗的分布特征,依据《火电厂大气污染物排放标准》讨论了附加煤耗引起的污染物排放状况。研究表明:该二次再热机组高加侧总损和总附加煤耗均高于低加侧,3号高加引起的能耗和污染物排放量最大,2号和4号高加外置蒸汽冷却器效果明显使其经济性显著。总体上,二次再热机组高加侧的效率高于一次再热机组,而低加侧恰相反。受蒸汽参数不同和结构变化的影响,同负荷下两种机组的损和附加煤耗分布的差异较大。100%负荷下,二次再热机组回热系统的附加煤耗及其引起的CO2、SO2、NOx和碳粉尘排放量分别为3.35g/(k W·h)、38 041.35t/a、1 045.03t/a、579.89t/a、10 515.50t/a。  相似文献   

18.
为了分析不同再循环烟气抽取点和引入点对某1 000 MW超超临界二次再热锅炉运行参数的影响,提出分别从省煤器和引风机后抽取烟气,并引入到炉膛底部和上部共4种烟气再循环方案。进行热力计算,分析不同负荷、不同再循环率下各方案对锅炉参数的影响。结果表明:烟气再循环会降低炉膛出口烟温和升高排烟温度,抽取点为引风机后,排烟温度升高幅度较大,引入点为炉膛上部时,炉膛出口烟温下降幅度较大;再循环烟气引入炉膛底部可以提高再热蒸汽温度和主蒸汽温度,引入点为炉膛上部不能明显提高再热蒸汽温度且会降低主蒸汽温度;随着再循环率的增加以及负荷降低,烟气再循环对蒸汽温度的影响程度增加;从省煤器后抽取烟气的方案对锅炉热效率的影响较小,但再循环风机磨损较严重,从引风机后抽取烟气对锅炉热效率影响较大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号