共查询到17条相似文献,搜索用时 47 毫秒
1.
2.
3.
针对滚动轴承的性能退化指标及其波动范围难以有效预测的问题,提出了一种基于模糊信息粒化与小波支持向量机的滚动轴承性能退化趋势预测方法。首先以一定的时间间隔采集滚动轴承运行过程中的振动信号序列,提取各个振动信号序列的特征指标,对特征指标序列进行模糊信息粒化,进而提取各个粒化窗口的有效分量信息;随后通过构建小波支持向量机对各个指标分量分别建立预测模型,实现对滚动轴承性能退化指标的退化趋势及波动范围的预测。实验结果表明,该预测方法可以有效跟踪滚动轴承性能衰退指标的变化趋势,并对其指标的波动范围进行有效预测。 相似文献
4.
5.
基于最小二乘支持向量机滚动轴承故障诊断 总被引:2,自引:1,他引:2
根据滚动轴承故障时振动信号特点,提出了一种基于小波包变换和最小二乘支持向量机(LS-SVM)相结合的滚动轴承故障诊断方法.通过对滚动轴承振动信号进行小波包分解,得到各分解节点对应频率段的重构信号以及各节点的能量,并将各节点能量组成的特征向量作为诊断模型的特征向量,输入到LS-SVM多类分类器中进行故障识别,然后在滚动轴承故障试验台上实测振动数据.分析结果表明,该方法具有较高的分类速度和较好的故障诊断正确率. 相似文献
6.
针对现有性能退化评估方法需要人工经验筛选特征指标,难以获取轴承故障状态下振动信号的问题,提出了一种基于深度置信网络(DBN)和支持向量数据描述(SVDD)相结合的滚动轴承性能退化评估方法。该方法以滚动轴承正常状态下的归一化幅值谱作为DBN的输入,利用DBN中的RBM构建特征自动提取模型,通过SVDD构建评估模型。使用不同工况下滚动轴承全寿命周期试验数据的分析表明,该方法能够很好地揭示轴承性能退化规律,而且摆脱了特征选择的人为干预,可以准确检测出滚动轴承早期微弱故障。 相似文献
7.
基于优化集合EMD的滚动轴承故障位置及性能退化程度诊断方法 总被引:3,自引:0,他引:3
为了更有效地同时诊断出滚动轴承故障位置及不同性能退化程度,提出了对滚动轴承不同状态振动信号进行特征提取和智能分类的故障诊断方法.该方法对各状态振动信号进行集合经验模态分解,但其效果依赖于总体平均次数和加入噪声的大小这2个重要参数,因此,提出集合经验模态分解中加入白噪声的准则.将分解后的一系列固有模态函数结合奇异值分解获取各状态的奇异值,并组成特征向量矩阵.将其输入到改进的超球结构多类支持向量机进行分类,从而实现滚动轴承正常、不同故障位置及性能退化程度的多状态同时智能诊断.实验结果表明,提出的集合经验模态分解方法中加入白噪声准则,可避免人为确定分解参数,提高其分解效率.基于优化参数的集合经验模态分解结合奇异值分解的智能诊断方法比已有的基于经验模态分解结合自回归模型的诊断方法识别率高. 相似文献
8.
《机械科学与技术》2016,(12):1882-1887
针对设备的视情维修,提出一种将小波包奇异谱熵和支持向量数据描述(SVDD)相结合的滚动轴承性能退化评估方法。先提取轴承全寿命周期内振动信号的小波包奇异谱熵作为轴承状态的特征矢量,然后以轴承正常状态下的特征矢量训练SVDD,得到正常状态下的基准超球体,再计算轴承全寿命周期内的特征矢量与基准超球体之间的相对距离,作为性能退化过程的定量评估指标,并对失效阈值和早期故障阈值进行设定。结果表明,与基于小波包和SVDD的性能退化评估方法相比,该方法的早期故障检测能力更强,对轴承性能退化各个阶段的描述更加准确。最后,利用基于EMD的Hilbert包络解调方法对评估结果的正确性进行了验证。 相似文献
9.
针对基于故障数据的数控装备可靠性研究中的小样本问题,提出了建立基于支持向量机的性能劣化模型.在研究支持向量机的建模理论和参数优化方法的基础上,将最小二乘法支持向量机工具LSSVM.M应用于性能退化数据处理,提出一种改进的参数选择方法,以提高拟合和预测准确性.通过实例,验证了该方法的可行性,并建立了数控机床加工精度的性能劣化模型,为可靠性评估奠定了基础. 相似文献
11.
针对平稳自回归模型无法准确描述滚动轴承振动信号的非平稳性,提出一种结合小波包分解与自回归模型的故障特征提取方法,以提取能准确反映轴承运行状态的特征向量。首先,通过小波包变换对滚动轴承运行时产生的非平稳振动信号进行分解,得到一系列刻画原始信号特征的系数;然后,利用自相关算法对各系数建立自回归模型,并将自回归模型的参数作为特征向量;最后,采用支持向量机分类器对提取的特征向量进行故障分类,从而实现滚动轴承的智能故障诊断。仿真结果表明该方法的有效性。 相似文献
12.
小波支持向量机在结构损伤识别中的应用研究 总被引:1,自引:1,他引:1
基于小波框架理论和支持向量核函数的条件,引入非线性小波基函数构造支持向量机(SVM)的核函数.得到一种具有较强泛化能力的紧致型小波支持向量机。对结构在环境脉动下的反应信号进行小波包分解,利用“能量一损伤状态”的特征提取方法得到特征向量,并作为紧致型小波支持向量机的输人进行训练和分类检验,提出了一种基于完全小波支持向量机的结构损伤识别方法。以一空间单层网壳结构为检测和诊断对象,用该方法对结构的损伤位置和程度进行识另口和分类具有较高的精度,同时该方法具有面向工程实际应用、成本低和分析简便等特点。 相似文献
13.
汪瑾;陈果;王洪伟;冯康佳;陈立波 《轴承》2015,(5):55-59
为了准确地进行航空发动机滚动轴承状态评估,提出了一种基于后验概率支持向量机的航空发动机滚动轴承状态评估方法。首先利用仿真数据建立了后验支持向量机模型,进行了分类试验和后验概率预测验证,然后利用航空轴承失效监控试验系统进行了滚动轴承性能退化试验,得到轴承不同工作状态的振动数据,最后利用获取的试验数据进行了滚动轴承状态评估,充分验证了该评估方法的正确性。 相似文献
14.
杜小磊;陈志刚;张楠;许旭 《轴承》2019,(11):60-67
针对传统滚动轴承故障诊断方法过度依赖专家经验,故障特征提取及选取困难的问题,提出一种基于集成深度小波神经网络和深度小波支持向量机的滚动轴承故障诊断方法。首先,利用不同的小波函数设计不同的改进小波自编码器,并构造相应的深度小波神经网络;然后,将轴承振动信号输入各深度小波神经网络进行无监督特征学习并进行微调;最后,将每个深度小波神经网络的顶层特征融合,输入深度小波支持向量机分类器实现对轴承故障的自动识别。试验结果表明,该方法能够对滚动轴承进行多工况及多种故障程度的有效识别,特征提取能力和识别能力优于浅层人工神经网络、支持向量机等传统方法以及深度信念网络、深度稀疏自编码器等深度学习模型。 相似文献
15.
基于小波包样本熵的滚动轴承故障特征提取 总被引:5,自引:0,他引:5
将样本熵引入故障诊断领域,讨论了样本熵的性能和计算参数的选择.结合小波包分解和样本熵,提出了一种新的滚动轴承故障特征提取方法.首先对轴承振动信号进行小波包分解;然后对归一化能量最大的子带进行重构,计算重构信号的样本熵;最后通过样本熵评价故障状态.滚动轴承故障诊断实例验证了该方法的有效性. 相似文献
16.
将小波包变换与LDA算法相结合,提出了一种基于LDA模型的滚动轴承故障类型检测新方法。首先通过小波包变换提取轴承振动信号的能量特征及其所包含的故障信息特征,并用\"词袋\"模型将故障信息特征表示成视觉词向量,然后利用LDA模型对轴承故障类型进行判别。试验表明,该方法能精确提取轴承的故障信息特征,快速检测出轴承的故障类型,与SVM等方法相比检测精度更高,鲁棒性更强,具有很好的故障检测效果。 相似文献