首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Zn1−xTixO (x = 0, 0.01, 0.03 and 0.05) nanoparticles were prepared by high-energy ball milling at 400 rpm. The milled powders were characterized by X-ray diffractometer (XRD) and the results exhibited that Ti-doped ZnO nanoparticles consisted of single phase with hexagonal structure when the mixtures of ZnO and TiO2 powders were milled for 20 h. The crystallite size reduced as a function of the doping content and milling time from 1 to 10 h then increased after milling for 20 h and when the annealing temperature increased. The strain changed inversely to the crystallite size. A wider band-gap was obtained by increasing the doping content and annealing temperature because of a reduction in defect concentration. Both ZnO- and Ti-doped ZnO nanoparticles caused damage to S. aureus, E. coli, P. mirabilis, S. typhi and P. aeruginosa.  相似文献   

2.
The effect of La/Ce ratio on the structure and electrochemical characteristics of the La0.7−xCexMg0.3Ni2.8Co0.5 (x = 0.1, 0.2, 0.3, 0.4, 0.5) alloys has been studied systematically. The result of the Rietveld analyses shows that, except for small amount of impurity phases including LaNi and LaNi2, all these alloys mainly consist of two phases: the La(La, Mg)2Ni9 phase with the rhombohedral PuNi3-type structure and the LaNi5 phase with the hexagonal CaCu5-type structure. The abundance of the La(La, Mg)2Ni9 phase decreases with increasing cerium content whereas the LaNi5 phase increases with increasing Ce content, moreover, both the a and cell volumes of the two phases decrease with the increase of Ce content. The maximum discharge capacity decreases from 367.5 mAh g−1 (x = 0.1) to 68.3 mAh g−1 (x = 0.5) but the cycling life gradually improve. As the discharge current density is 1200 mA g−1, the HRD increases from 55.4% (x = 0.1) to 67.5% (x = 0.3) and then decreases to 52.1% (x = 0.5). The cell volume reduction with increasing x is detrimental to hydrogen diffusion D and accordingly decreases the low temperature dischargeability of the La0.7−xCexMg0.3Ni2.8Co0.5 (x = 0.1-0.5) alloy electrodes.  相似文献   

3.
Lanthanum La-substituted multiferroic Bi1−xLaxFeO3 ceramics with x = 0.0, 0.05, 0.10, 0.15, 0.20 and 0.25 have been prepared by solution combustion method. The effect of La substitution for the dispersion studies on dielectric and ferroelectric properties of Bi1−xLaxFeO3 samples have been studied by performing x-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), density, dc resistivity and dielectric measurements as well as characterizing the polarization-field hysteresis loop. The results of prepared samples are compared with those of bismuth ferrite (BiFeO3). In the measuring frequency of 10 KHz to 1 MHz, the dielectric constants and dielectric losses for samples x = 0.20, 0.25 are almost stable and exhibited lowest dielectric loss close to 0.1. The resistivity of Bi1−xLaxFeO3 samples reaches a maximum value of 109 ohm-cm, which is about three times higher than that for pure BiFeO3. The results also show that stabilization of crystal structure and nonuniformity in spin cycloid structure by La substitution enhances the resistivity, dielectric and ferroelectric properties. Furthermore, the substitution of rare earth La for Bi helps to eliminate the impurity phase in BiFeO3 ceramic.  相似文献   

4.
Nano-sized Ba1−xLaxTiO3 (0.00 ≤ x ≤ 0.14) powders were prepared by a coprecipitation method and calcined at 850 °C in air. The corresponding ceramics were obtained by Spark Plasma Sintering (SPS) at 1050 °C. These ceramics are oxygen deficient and are marked as Ba1−xLaxTiO3−δ. Both powders and ceramics were characterized by X-ray diffraction (XRD) and Transmission Electron Microscopy (TEM). The effect of lanthanum concentration on the densification behavior, on the structure and the microstructure of the oxides was investigated. Average grain sizes are comprised between 54 (3) nm and 27 (2) nm for powders, and 330 (11) nm and 36 (1) nm for ceramics according to the La-doping level. Powders crystallize in the cubic (or pseudo-cubic) perovskite phase. The structure of ceramics consists in a mixture of cubic (or pseudo-cubic) and tetragonal perovskite type phases. As the lanthanum content increases, the tetragonality of the samples decreases, as well as the grain size.  相似文献   

5.
Ce0.8Sm0.2−xLaxO1.9 powders, denoted as LaxSDC (for x=0, 0.01, 0.03, 0.05, 0.07 and 0.1), were synthesized via the mechanical milling reaction method. The La3+ doping content has a remarkable influence on structural and electrical properties. The phase identification and morphology were studied by X-ray diffraction (XRD) and scanning electron microscopy (SEM). Lattice parameters were calculated by the Rietveld method. It was observed that the lattice parameter values in Ce0.8Sm0.2−xLaxO1.9 systems obey Vegard's law. The pellets were then sintered at 1500 °C in air for 7 h. The relative densities of these pellets were over 93.7%.The electrical conductivity was studied using two-probe impedance spectroscopy and results showed that the conductivity of Ce0.8Sm0.2−xLaxO1.9 first increased and then decreased with La dopant content x. Results also showed that Ce0.8Sm0.17La0.03O1.9 had the highest electrical conductivity, σ700 °C equal to 3.8×10−2 Scm−1 and an activation energy equal to 0.77 eV. It was therefore concluded that co-doping with the appropriate amount of La can further improve the electrical properties of ceria electrolytes.  相似文献   

6.
Bi4−xLaxTi3O12 (BLT) thin films and powders with x ranging from 0 to 0.75 were prepared by the polymeric precursor solution. The effect of lanthanum on the structure of BIT powders was investigated by Rietveld Method. The increase of lanthanum content does not lead to any secondary phases. Orthorhombicity of the bismuth titanate (BIT) crystal lattice decreased with the increase of lanthanum content due the reduction of a/b ratio. The BLT films show piezoelectric coefficients of 45, 19, 16 and 10 pm/V for x = 0, 0.25, 0.50 and 0.75, respectively. The piezoelectric response is strongly reduced by the amount of lanthanum added to the system.  相似文献   

7.
The reduction of commercial and mechanochemically processed CeO2 powders was studied. Nanostructured CeO2, with the crystallite size of 21 nm and the lattice distortion of 0.37%, was obtained during 60 min of milling in a high-energetic vibratory mill. X-ray diffraction, scanning electron microscopy and Brunauer-Emmett-Teller method were applied to characterize the milled powders. During the thermal treatment at 1200 and 1400 °C in an argon atmosphere the nonstoichiometric CeO2−x oxides with the defect fluorite structure were formed. Compositions of CeO2−x oxides were determined according to its lattice parameter. The results showed that the release of oxygen, as well as the rate of reduction, was more effective in nanocrystalline then in the microcrystalline CeO2, producing at 1200 °C CeO1.80 and CeO1.85 oxides, while at 1400 °C were obtained similarly, CeO1.77 and CeO1.78, compositions.  相似文献   

8.
(LaxSr1−x)MnO3 (LSMO) and (LaxSr1−x)FeO3 (LSFO) (x = 0.2–0.4) ceramics prepared by a simple and effective reaction-sintering process were investigated. Without any calcination involved, La2O3 and SrCO3 were mixed with MnO2 (LSMO) or Fe2O3 (LSFO) then pressed and sintered directly. LSMO and LSFO ceramics were obtained after 2 and 4 h sintering at 1350–1400 and 1200–1280 °C, respectively. Grain size decreased as La content increased in LSMO and LSFO ceramics.  相似文献   

9.
La(1−x)SrxFeO3 (x = 0.2,0.4) powders were prepared by a stearic acid combustion method, and their phase structure and electrochemical properties were investigated systematically. X-ray diffraction (XRD) analysis shows that La(1−x)SrxFeO3 perovskite-type oxides consist of single-phase orthorhombic structure (x = 0.2) and rhombohedral one (x = 0.4), respectively. The electrochemical test shows that the reaction at La(1−x)SrxFeO3 oxide electrodes are reversible. The discharge capacities of La(1−x)SrxFeO3 oxide electrodes increase as the temperature rises. With the increase of the temperature from 298 K to 333 K, their initial discharge capacity mounts up from 324.4 mA h g−1 to 543.0 mA h g−1 (when x = 0.2) and from 147.0 mA h g−1 to 501.5 mA h g−1 (when x = 0.4) at the current density of 31.25 mA g−1, respectively. After 20 charge-discharge cycles, they still remain perovskite-type structure. Being similar to the relationship between the discharge capacity and the temperature, the electrochemical kinetic analysis indicates that the exchange current density and proton diffusion coefficient of La(1−x)SrxFeO3 oxide electrodes increase with the increase of the temperature. Compared with La0.8Sr0.2FeO3, La0.6Sr0.4FeO3 electrode is a more promising candidate for electrochemical hydrogen storage because of its higher cycle capacity at various temperatures.  相似文献   

10.
In this work the microstructure and magnetic properties of Mn-Zn ferrites powders were investigated. MnxZn1  xFe2O4 powders where x = 0.2; 0.35; 0.5; 0.65; 0.8 and 1.0 were obtained by citrate precursor method. Citrate resin precursor was burned on air atmosphere at 400 °C for 3 h. Mn-Zn powders were calcined at 950 °C during 150 min under inert atmospheres: N2 and rarefied atmosphere. Thermal analysis of precursor resin, phase evolution and microstructure of Mn-Zn ferrites powders were investigated by TG, DTA, XRD and SEM techniques. The powders calcined under rarefied atmosphere show spinel cubic structure and contamination of α-Fe2O3, while powders calcined under N2 presents only the spinel cubic structure. Particle size was observed by SEM ranging from 80 to 150 nm. The magnetic properties were measured employing a vibrating sample magnetometer (VSM). It was observed that the saturation magnetization Ms increased with the increase of Mn content. The Ms of Mn0.8Zn0.2Fe2O4 calcined on rarefied atmosphere and Mn0.8Zn0.2Fe2O4 calcined on N2 was 23.31 emu g−1 and 56.23 emu g−1, respectively.  相似文献   

11.
The structure, magnetic, and thermal expansion properties of chromium-substituted lithium ferrite have been investigated. The lattice constant (Å) decreases linearly as a (x) = 8.32366 − 0.04338x for Li0.5Fe2.5−xCrxO4 (x = 0.0–1.0). When increasing Cr content, the initial permeability decreased gradually. The average thermal expansion coefficient of Li0.5Fe2.5−xCrxO4 (x = 0.0–1.0) varied from 15.34 to 17.77 ppm/°C, with increasing Cr content, the average thermal expansion coefficient decreased. The average thermal expansion coefficient (ppm/°C) in the range of 25–850 °C give the polynomial correlation as follows, TEC (x) = 1 7.775 − 0.216x − 0.723x2 − 1.493x3 for Li0.5Fe2.5−xCrxO4 (x = 0.0–1.0).  相似文献   

12.
Perovskite solid solutions of (La0.6Sr0.4)(X1−yMgy)O3−δ (X = Ti, Zr, Al) were prepared by a coprecipitation method using corresponding aqueous solutions and ammonium carbonate solution. The freeze-dried powders were sintered in air at 1000-1500 °C for 1-36 h. Single phase solid solutions were produced in the compositions of (La0.6Sr0.4)(Zr0.6Mg0.4)O3−δ and (La0.6Sr0.4)(Al0.9Mg0.1)O3−δ where (3 − δ) < 3. For the compositions of X = Ti and Zr for y = 0.1 where (3 − δ) > 3, two phases including perovskite solid solution were produced at 1400-1500 °C. The stability of perovskite solid solution was closely related to the fraction of lattice oxygen atom (3 − δ). A relatively high conductivity was measured for (La0.6Sr0.4)(Al0.9Mg0.1)O3−δ (σ = 4.15 × 10−4 S/cm at 600 °C, activation energy 113.4 kJ/mol). The influence of fraction of oxide ion vacancy on the activation energy was small for δ = 0.1-0.3 of perovskite solid solution.  相似文献   

13.
Y2−xLaxW3O12 solid solutions were successfully synthesized by the solid state reaction method. The microstructure, hygroscopicity and thermal expansion property of the resulting samples were investigated by X-ray diffraction (XRD), thermogravimetric analysis (TGA), field emission scanning electron microscopy (FESEM) and thermal mechanical analysis (TMA). Results indicate that the structural phase transition of the Y2−xLaxW3O12 changes from orthorhombic to monoclinic with increasing substituted content of lanthanum. The pure phase can form for 0≤x≤0.4 with orthorhombic structure and for 1.5≤x≤2 with monoclinic one. High lanthanum content leads to a low relative density of Y2−xLaxW3O12 ceramic. Thermal expansion coefficients of the Y2−xLaxW3O12 (0≤x≤2) ceramics also vary from −9.59×10−6 K−1 to 2.06×10−6 K−1 with increasing substituted content of lanthanum. The obtained Y0.25La1.75W3O12 ceramic shows almost zero thermal expansion and its average linear thermal expansion coefficient is −0.66×10−6 K−1 from 103 °C to 700 °C.  相似文献   

14.
New pyrochlore ceramics have been produced by doping Sm and Nd into the Bi site and Fe into the Nb site in the Bi1.5Zn0.92Nb1.5O6.92 (BZN) pyrochlore. Doped pyrochlore ceramics were produced by conventional solid state mixing of oxides at different doping levels using the compositions of Bi1.5−xSmxZn0.92Nb1.5O6.92, Bi1.5−xNdxZn0.92Nb1.5O6.92 and Bi1.5Zn0.92Nb1.5−xFexO6.92−x. The solubility limit of cations was determined as x = 0.13, 0.18 and 0.15 for Sm, Nd and Fe, respectively. While Sm and Nd increased the dielectric constant (?), Fe doping led a decrease in ?. Dielectric constant of Sm and Nd doped BZN increased to 199 at x = 0.13 (Sm) and to 219 at x = 0.18 (Nd). At low Fe dopings (x = 0.05), the dielectric constant of BZN increased to 242 but decreased to 211 at x = 0.15. The dielectric losses were lower for Sm and Nd dopings than Fe but in all cases it was lower than 0.006. The dielectric constant of Sm, Nd and Fe doped BZN ceramics was nearly independent of frequency within the frequency range between 1 kHz and 2 MHz, but decreased considerably with temperature between 20 and 200 °C. Temperature coefficient of Sm doped BZN (−354 ppm/°C) was lower than Nd and Fe doped BZN ceramics at solubility limits (−538 ppm/°C for Nd and −565 ppm/°C for Fe).  相似文献   

15.
Mg1−xNixAl2O4 (x = 0, 0.25, 0.5, 0.75 and 1) solid solutions have been prepared by combustion synthesis. After annealing the combustion synthesized powders at 1000 °C for 3 h single-phase Mg1−xNixAl2O4 was obtained over the entire range of compositions. The lattice parameter of Mg1−xNixAl2O4 gradually increased from 8.049 Å (NiAl2O4) to 8.085 Å (MgAl2O4), which certified the formation of the spinel solid solutions. All samples prepared by combustion synthesis had blue color shades, denoting the inclusion of Ni2+ in the spinel structure in octahedral and tetrahedral configuration. The crystallite size of Mg1−xNixAl2O4 was in the range of 35-39 nm and the specific surface area varied between 5.8 and 7.0 m2/g.  相似文献   

16.
Sr0.4La0.6Ti1−xMnxO3−δ with rhombohedral structure has been investigated in terms of their electrochemical performance, redox stability, and electro-catalytic properties for solid oxide fuel cell anodes. The performance of Sr0.4La0.6Ti1−xMnxO3−δ anodes for solid oxide fuel cells strongly depends on the Mn substitution at the B-site of the perovskites. Electrical conductivity of Sr0.4La0.6Ti1−xMnxO3−δ increases with increasing Mn content. X-ray photoelectron spectroscopy analysis reveals that the amount of Mn3+ and Ti3+, which is an electronic charge carrier, increases with Mn doping. The reduced anode powders with high Mn/Ti ratio show oxygen storage capability and a low carbon deposition rate. Linear thermal expansion coefficients of Sr0.4La0.6Ti1−xMnxO3−δ anodes range from 9.46×10−6 K−1 to 11.3×10−6 K−1. The maximum power densities of the single cell with the Sr0.4La0.6Ti0.2Mn0.8O3−δ anode in humidified H2 and CH4 at 800 °C are 0.29 W cm−2 and 0.24 W cm−2, respectively.  相似文献   

17.
Eu-doped perovskites La0.65−xEuxSr0.35MnO3 (0.05 ≤ x ≤ 0.30) were synthesized by sol–gel method using citric acid and characterized by X-ray diffraction, magnetization, resistivity and magnetoresistance (MR) experiments. All samples had a single hexagonal perovskite structure. As x increased from 0.05 to 0.30, the Curie temperature TC for the samples decreased from 352 to 242 K. It was found that two transition points appeared when the resistivity changed with increasing temperature, and upon an application of a magnetic field of 20 kOe the maximum magnetoresistivity of 18% for the La0.65−xEuxSr0.35MnO3 with x = 0.20 was obtained at room temperature 300 K. The mechanism of the transitions for the samples was explored.  相似文献   

18.
Series of single-phase Ni1  xZnxFe2O4 (x = 0.20, 0.35, 0.50 and 0.60) nanopowders with average particle size of ∼ 35 nm have been synthesized by using oxalate based precursor method. Precursor powders were synthesized by reacting aqueous solutions of metal nitrates and oxalic acid by using different total metal ions: oxalic acid molar ratios and then evaporating them to dryness. Pure, single-phase Ni-Zn ferrite nanopowder was formed by calcining the precursor with total metal ion: oxalic acid ratio of 1:0.125 at a temperature of 850 °C. The synthesized nanopowders were characterized by using X-ray diffraction, Thermo-gravimetric and Differential Scanning Calorimetric analysis, Transmission Electron Microscope and Scanning Electron Microscope. Room temperature DC resistivity of the nanopowders was measured with respect to temperature by the two-probe method and was of the order of ∼ 107 Ωcm. Room temperature saturation magnetization was measured by using Vibrating Sample Magnetometer and it varied between 34-49 emu/g depending on the composition. This aqueous solution based method provides a simple and cost-effective route to synthesize single phase, Ni-Zn ferrite nanopowders.  相似文献   

19.
The structure and thermal properties of La0.6Sr0.4Co0.2Fe0.8O3−δ-SDC carbonate (LSCF-SDC carbonate) composite cathodes were investigated with respect to the calcination temperatures and the weight content of the samarium-doped ceria (SDC) carbonate electrolyte. The composite cathode powder has been prepared from La0.6Sr0.4Co0.2Fe0.8O3−δ and SDC carbonate powders using the high-energy ball milling technique in air at room temperature. Different powder mixtures at 30 wt%, 40 wt% and 50 wt% of SDC carbonate were calcined at 750-900 °C. The findings indicated that the structure and thermal properties of the composite cathodes were responsive to the calcination temperature and the content of SDC carbonate. The absence of any new phases as confirmed via XRD analysis demonstrated the excellent compatibility between the cathode and electrolyte materials. The particle size of the composite cathode powder was ∼0.3-0.9 μm having a surface area of 4-15 m2 g−1. SEM investigation revealed the presence of large particles in the resultant powders resulting from the increased calcination temperature. The composite cathode containing 50 wt% SDC carbonate was found to exhibit the best thermal expansion compatibility with the electrolyte.  相似文献   

20.
The La2−xAxMo2O9−δ (A = Ca2+, Sr2+, Ba2+ and K+) series has been synthesised as nanocrystalline materials via a modification of the freeze-drying method. The resulting materials have been characterised by X-ray diffraction (XRD), thermal analysis (TG/DTA, DSC), scanning electron microscopy (SEM) and high-resolution transmission electron microscopy (HRTEM). The high-temperature β-polymorph is stabilised for dopant content x > 0.01. The nanocrystalline powders were used to obtain dense ceramic materials with optimised microstructure and relative density >95%. The overall conductivity determined by impedance spectroscopy depends on both the ionic radius and dopant content. The conductivity decreases slightly as the dopant content increases in addition a maximum conductivity value was found for Sr2+ substitution, which show an ionic radii slightly higher than La3+ (e.g. 0.08 S cm−1 for La2Mo2O9 and 0.06 S cm−1 for La1.9Sr0.1Mo2O9−δ at 973 K). The creation of extrinsic vacancies upon substitution results in a wider stability range under reducing conditions and prevents amorphisation, although the stability is not enhanced significantly when compared to samples with higher tungsten content. These materials present high thermal expansion coefficients in the range of (13-16) × 10−6 K−1 between room temperature and 753 K and (18-20) × 10−6 K−1 above 823 K. The ionic transport numbers determined by a modified emf method remain above 0.98 under an oxygen partial pressure gradient of O2/air and decreases substantially under wet 5% H2-Ar/air when approaching to the degradation temperature above 973 K due to an increase of the electronic contribution to the overall conductivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号