首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
In this work, boron carbide ceramics were sintered in the temperature range of 1400–1600 °C by spark plasma sintering (SPS). The influence of sintering temperature, heating rate, and holding time on the microstructure, densification process and physical property was studied. The heating rate was found to have greater influence than that of the holding time on the microstructure and the densification of boron carbide. The optimal sintering temperature was 1600 °C under the heating rate higher than 100 °C/min. The relative density, flexural strength, Vickers hardness and fracture toughness of the sample synthesized at 1600 °C were 98.33%, 828 MPa, 31 GPa and 2.66±0.29 MPa m1/2, respectively. The densification mechanism was also investigated.  相似文献   

2.
Spark plasma sintering (SPS) of monolithic ZrB2 ultra-high temperature ceramic and 2–6 vol% graphene nanoplates (GNPs) reinforced ZrB2 matrix composites is reported. The SPS at 1900 °C with a uni-axial pressure of 70 MPa and soaking time of 15 min resulted in near-full densification in ZrB2–GNP composites. Systematic investigations on the effect of GNP reinforcement on densification behavior, microstructure, and mechanical properties (microhardness, biaxial flexural strength, and indentation fracture toughness) of the composites are presented. Densification mechanisms, initiated by interfacial reactions, are also proposed based on detailed thermodynamic analysis of possible reactions at the sintering temperature and the analysis of in-process punch displacement profiles. The results show that GNPs can be retained in the ZrB2 matrix composites even with high SPS temperature of 1900 °C and cause toughening of the composites through a range of toughening mechanisms, including GNP pull-out, crack deflection, and crack bridging.  相似文献   

3.
Densification studies of 8 mol% yttria stabilized zirconia ceramics were carried out by employing the sintering techniques of conventional ramp and hold (CRH), spark plasma sintering (SPS), microwave sintering (MWS) and two-stage sintering (TSS). Sintering parameters were optimized for the above techniques to achieve a sintered density of >99% TD. Microstructure evaluation and grain size analysis indicated substantial variation in grain sizes, ranging from 4.67 μm to 1.16 μm, based on the sintering methodologies employed. Further, sample was also sintered by SPS technique at 1425 °C and grains were intentionally grown to 8.8 μm in order to elucidate the effect of grain size on the ionic conductivity. Impedance spectroscopy was used to determine the grain and grain boundary conductivities of the above specimens in the temperature range of RT to 800 °C. Highest conductivity of 0.134 S/cm was exhibited by SPS sample having an average grain size of 1.16 μm and a decrease in conductivity to 0.104 S/cm was observed for SPS sample with a grain size of 8.8 μm. Ionic conductivity of all other samples sintered vide the techniques of TSS, CRH and MWS samples was found to be ∼0.09 S/cm. Highest conductivity irrespective of the grain size of SPS sintered samples, can be attributed to the low densification temperature of 1325 °C as compared to other sintering techniques which necessitated high temperatures of ∼1500 °C. The exposure to high temperatures while sintering with TSS, CRH and MWS resulted into yttria segregation leading to the depletion of yttria content in fully stabilized zirconia stoichiometry as evidenced by Energy Dispersive Spectroscopy (EDS) studies.  相似文献   

4.
Additive-free β-SiC nanopowders were densified by spark-plasma sintering in the temperature range 1650-2200 °C, holding time 1-30 min, and pressure 50-150 MPa. The starting nanopowder was further refined and mechanically activated by ball milling in order to promote densification. In a detailed parametric study, temperature, holding time, and/or pressure were varied to investigate their effect on the densification and grain growth during sintering. High densifications were obtained for temperatures greater than 1800 °C. Full densification (98.0 ± 0.6%) was reached at a sintering temperature of 2100 °C. Depending on the sintering conditions, nanostructured materials can be produced with grain sizes between 90 and 100 nm, and microstructured materials with grain sizes between 0.22 and 2.39 μm. Pressure has a major effect on the grain size, it being necessary to use a pressure of 150 MPa to obtain nanostructured materials.  相似文献   

5.
Densification of nanocrystalline cubic yttria (nc-Y2O3) powder, with 18 nm crystal size and 1 wt% LiF as a sintering additive was investigated. Specimens were fabricated by spark plasma sintering at 100 MPa, within the temperature range of 700-1500 °C. Sintering at 700 °C for 5 and 20 min resulted in 95% and 99.7% dense specimens, with an average grain size of 84 and 130 nm, respectively. nc-Y2O3 without additive was only 65% dense at 700 °C for 5 min. The presence of LiF at low sintering temperatures facilitated rapid densification by particle sliding and jamming release. Sintering at high temperatures resulted in segregation of LiF to the grain boundaries and its entrapment as globular phase within the fast growing Y2O3 grains. The sintering enhancement advantage of LiF was lost at high SPS temperatures.  相似文献   

6.
The aim of this study is the preparation and characterization of dense cubic zirconia ceramics and zirconia nanocomposites (reinforced with 5 wt% alumina). The powders were obtained through sol–gel methods and densified using classical sintering and spark plasma sintering (SPS) methods. The obtained ceramics were characterized through X-ray diffraction, scanning electron microscopy and impedance spectroscopy at room and high temperature. The average grain size of cubic zirconia particles was found to be approximately 8 and 2.5 μm for the classical sintering and 99 nm for SPS. The alumina particles in composites have an average grain size of 0.7 μm for classical sintering and 53 nm for SPS ones. The total conductivity for nanocomposites sintered through both methods was also determined.  相似文献   

7.
To the first time, thermal conductivities of spark plasma sintered β-sialons (Si3Al3O3N5) procured from combustion synthesis (CS) with no sintering additive were measured by the laser flash method at room temperature. A full densification occurred when these materials were sintered at 1600 °C with a simultaneous pressure of 50 MPa. XRD analyses indicated that single phase β-sialons were formed after SPS though the combustion synthesized β-sialon powders had considerable amounts of silicon impurities. Thermal conductivity values increased with sintering temperature and attained a maximum of 5.49 W m−1 K−1 for fully densified β-sialons sintered at 1700 °C for 10 min.  相似文献   

8.
Al2O3 and AlN powder mixtures were used to synthesise AlON ceramics using the reactive spark plasma sintering (SPS) method at temperatures between 1400 and 1650 °C for 15-45 min at 40 MPa under N2 gas flow. AlON phase formation was initiated in the samples sintered above 1430 °C, according to the X-ray analysis. The complete transformation of the initial phases (Al2O3 and AlN) into AlON was observed in the samples that were spark plasma sintered at 1650 °C for 30 min at 40 MPa. A high spark plasma sintering temperature together with a low heating rate produced a greater amount of AlON formation at a constant process time. The densification, microstructure and mechanical properties of the produced ceramics were analysed. The highest hardness value was recorded to be 16.7 GPa, and the fracture toughness of the sample with the highest AlON ratio was measured to be 3.95 MPa m1/2.  相似文献   

9.
The simultaneous synthesis and densification of rhenium diboride is investigated starting from Re and B as reactants by using the Spark Plasma Sintering (SPS) apparatus. It is shown that SPS represents an effective technique to synthesize ReB2 bulk samples with high purity and density. In particular, a dense product with traces of secondary phases (Re7B3) is obtained in 35 min of total processing time by applying a maximum temperature of 1600 °C and a mechanical pressure of 20 MPa.  相似文献   

10.
Mullite ceramics were fabricated at relatively low sintering temperatures (1500-1550 °C) from recycled flyash and bauxite with MgO addition as raw materials. The densification behavior was investigated as function of magnesia content and sintering temperature. The results of thermal analysis, bulk density and pore structure indicate that MgO addition effectively promoted sintering, especially above 1450 °C. Due to the presence of large interlocked elongated mullite crystals above 1450 °C, associated with enhanced densification, an improvement in mechanical strength was obtained for the samples containing magnesia. The addition of magnesia slightly decreases the LTEC at 1300 °C due to the formation of low-expansion α-cordierite, but slightly increases the LTEC above 1400 °C due to the formation of high expansion corundum and MgAl2O4 spinel.  相似文献   

11.
Al2O3 ceramics were fabricated without additives under high pressure (2-7 GPa) at different temperatures (600-1200 °C) using nanocrystalline alumina powder with metastable γ-Al2O3 phase as the starting material.It was shown that high pressure increases the nucleation rate while reducing the growth rate of the transformed α phase so that its grain size decreases and nano-scale grains in the sintered structure can be achieved.On the other hand the sintered samples at 7 GPa and high temperature (1000 °C) have shown micron-scale large grain sizes compared to those sintered at lower pressures, for the same temperature and sintering time. This could be attributed to the higher input energy in the system at high pressure and high temperature conditions, thereby reaching the final stage in sintering more quickly.In this work, the best combination of grain size (∼200 nm) and density (98.0% TD) was obtained under the sintering condition of 1000 °C at 7 GPa with a holding time of 1 min.Thus for high pressure/high temperature conditions, the sintering time should be reduced to prevent grain growth.  相似文献   

12.
This work investigates the feasibility to the fabrication of high density of fine alumina–5 wt.% zirconia ceramics by two-step sintering process. First step is carried out by constant-heating-rate (CHR) sintering in order to obtain an initial high density and a second step is held at a lower temperature by isothermal sintering aiming to increase the density without obvious grain growth. Experiments are conducted to determine the appropriate temperatures for each step. The temperature range between 1400 and 1450 °C is effective for the first step sintering (T1) due to its highest densification rate. The isothermal sintering is then carried out at 1350–1400 °C (T2) for various hours in order to avoid the surface diffusion and improve the density at the same time. The content of zirconia provides a pinning effect to the grain growth of alumina. A high ceramic density over 99% with small alumina size controlled in submicron level (0.62–0.88 μm) is achieved.  相似文献   

13.
Alumina ceramics reinforced with 1 wt.% single-walled carbon nanotube (SWCNT) were fabricated via spark plasma sintering (SPS) of composite powders containing carboxyl (COOH) or hydroxyl (OH) group functionalized single-walled carbon nanotubes. The samples were SPS’ed at 1600 °C under 50 MPa pressure for holding time of 5 min and at a heating rate of 4 °C/s. The effects of CNT addition having different surface functional groups on microstructure, conductivity, density and hardness were reported. It was shown that nanotube addition decreased the grain sizeof alumina from 3.17 μm to 2.11 μm for COOH-SWCNT reinforcement and to 2.28 μm for COOH-SWCNT reinforcement. The hardness values of the composites are similar for all samples but there is 4.5 and 7.5 times increase in electrical conductivity with respect to monolithic alumina for COOH-SWCNT and OH-SWCNT, respectively. It was also shown by TEM and FEG SEM observations that transgranular fracture behaviour of alumina was changed to mostly intergranular fracture mode by the addition of both types of CNTs which may be due to location of CNTs along the grain boundaries. A significant grain size reduction in alumina is considered toresult fromthe suppressing effect of CNTs during sintering.  相似文献   

14.
An ultra-fine alumina powder was doped with yttrium or zirconium chloride to produce Al2O3-5 vol.%ZrO2 (AZ-5) and Al2O3-5 vol.%YAG (AY-5) composite powders. Composite samples and pure alumina, used as a reference, were submitted to dilatometric analyses up to 1500-1550 °C at 2, 5 and 10 °C/min for supplying the data required for the modeling of their sintering behaviour. The best fit for the three samples was obtained by applying an Avrami-Erofeev nucleation and growth model (An) and a subsequent power law reaction (AnFn). The evolution of the activation energy with densification is given for the three samples, as well as the prediction of their best sintering conditions. Finally, densification mechanism for the immiscible (AZ-5) and miscible (AY-5) systems are hypothesized and correlated with their final microstructures.  相似文献   

15.
The optical properties and microwave dielectric properties of transparent polycrystalline MgAl2O4 ceramics sintered by spark plasma sintering (SPS) through homemade nanosized MgAl2O4 powders at temperatures between 1250 °C and 1375 °C are discussed. The results indicate that, with increasing sintering temperatures, grain growth and densification occurred up to 1275 °C, and above 1350 °C, rapid grain and pore growth occurred. The in-line light transmission increases with the densification and decreases with the grain/pore growth, which can be as high as 70% at the wavelength of 550 nm and 82% at the wavelength of 2000 nm, respectively. As the sintering temperature increases, Q×f and dielectric constant εr values increase to maximum and then decrease respectively, while τf value is almost independent of the sintering temperatures and remains between −77 and −71 ppm/°C. The optimal microwave dielectric properties (εr=8.38, Q×f=54,000 GHz and τf=−74 ppm/°C) are achieved for transparent MgAl2O4 ceramics produced by spark plasma sintering at 1325 °C for 20 min.  相似文献   

16.
The effect of employing a short sintering holding time of 12 min as compared to that of the commonly employed holding time of 120 min (2 h) on the properties of undoped and 1 wt% manganese oxide (MnO2)-doped Y-TZP ceramics were studied. Sintering studies was conducted over the temperature range of 1150-1600 °C. Bulk density, Young's modulus, Vickers hardness and fracture toughness tests were carried out on the sintered samples. The results revealed that the 12 min sintering holding time was effective in promoting densification of the 1 wt% MnO2-doped Y-TZP without sacrificing tetragonal phase stability or mechanical properties and incurring grain growth. Microstructure investigation by using the scanning electron microscope (SEM) of the fracture MnO2-doped Y-TZP samples which was subjected to rapid quenching in liquid nitrogen revealed distinct microstructural features believed to be associated with the presences of a transient liquid phase during sintering. A sintering mechanism was subsequently proposed to explain the densification behaviour of MnO2-doped Y-TZP ceramics.  相似文献   

17.
A high transmittance/small grain size combination for pure spinel ceramics from commercially available nanopowders without sintering aids can be obtained by SPS sintering. By using a low heating rate ≤10 °C/min and a sintering temperature ≤1300 °C, a transparent polycrystalline MgAl2O4 spinel was fabricated by SPS with an in-line transmission of 74% and 84% for 550 nm (visible) and 2000 nm (NIR) wavelengths respectively. A small average grain size of about 250 nm was obtained and the pores located at the multiple grain junctions have a mean size of about 20 nm. The high in-line transmission is linked not only to the low residual porosity but particularly to the very small size of pores.  相似文献   

18.
The sinterability of a class F fly ash was investigated as a function of processing conditions including sintering temperature (1050-1200 °C) and sintering time (0-90 min). Density, shrinkage, splitting tensile strength, water absorption and residual loss on ignition (RLOI) were evaluated as measures of sintering efficiency. Scanning electron microscopy (SEM), X-ray microanalysis and X-ray diffraction was used to examine microstructure and phase development due to processing. The results show that premature densification can inhibit complete carbon removal and that carbon combustion is influenced by both internal and external mass transfer conditions.  相似文献   

19.
Highly sinter-active nano crystalline composite powder of 2 mol% yttria doped tetragonal zirconia polycrystal (2Y-TZP) with 2 wt% alumina was synthesized by co-precipitation method. Crystallization temperature of the amorphous precursor powder, measured from simultaneous thermogravimetric (TG) and differential thermal analysis (DTA) techniques was found to be ∼470 °C. The powder was calcined at different temperatures in the range of 700-1000 °C. XRD patterns of the calcined powders revealed the presence of a single tetragonal phase. Particle size of the calcined powder measured by different techniques (X-ray line broadening, BET surface area and laser scattering technique) indicated an increase in the average particle size with calcination temperature. The study of compaction behaviour revealed the presence of soft agglomerates in the calcined powder. Pore size distribution of the green compacts obtained from a mercury porosimeter was found to be monomodal above a critical pressure. The onset temperature of sintering was found to increase with calcination temperature. Powders calcined at 800 °C and 900 °C had shown better sinterability at 1200 °C owing to the presence of finer pores with a narrow size distribution in the green compacts. Sintering behaviour of the powder calcined at 700 °C was found to be marginally poorer in comparison to the other samples, whereas the powder calcined at 800 °C had demonstrated best densification behaviour, especially when compacted at 300 MPa.  相似文献   

20.
The fabrication of composites formed by alumina grains (95 vol%) in the micrometer size range and aluminium titanate nanoparticles (5 vol%) by reaction sintering of alumina (Al2O3) and titania (TiO2) is investigated. The green bodies were constituted by mixtures of sub-micrometric alumina and nano-titania obtained from freeze-drying homogeneous water based suspensions, and pressing the powders. The optimization of the colloidal processing variables was performed using the viscosity of the suspensions as control parameter. Different one step and two step sintering schedules using as maximum dwell temperatures 1300 and 1400 °C were established from dynamic sintering experiments. Specimens cooled at 5 °C/min as well as quenched specimens were prepared and characterized in terms of crystalline phases, by X-ray diffraction, and microstructure by scanning electron microscopy of fracture surfaces.Even though homogeneous final materials were obtained in all cases, full reaction was obtained only in materials treated at 1400 °C. The microstructure of the composites obtained by quenching was formed by an alumina matrix with bimodal grain size distribution and submicrometric aluminium titanate grains located inside the largest alumina grains and at triple points. However a cooling rate of 5 °C/min led to significant decomposition of aluminium titanate. This fact is attributed to the small size of the particles and the effect of the alumina surrounding matrix.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号