首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Er3+ doped K0.5Na0.5NbO3 (KNN) lead-free piezoelectric ceramics were synthesized by the solid-state reaction method. The upconversion emission properties of Er3+ doped KNN ceramics were investigated as a function of Er3+ concentration and incident pumping power intensity. Bright green (~555 nm) and red (670 nm) upconversion emission bands were obtained under 980 nm excitation at room temperature, which are attributed to (2H11/2, 4S3/2)→4I15/2 and 4F9/24I15/2 transitions, respectively. The upconversion emission intensity can be adjusted by changing Er3+ concentration, and the mechanism of upconversion processes involve not only a two-photon absorption but also a three-photon absorption. In addition to the admirable intrinsic piezoelectric properties of KNN, this kind of material may have potential application as a multifunctional device by integrating its upconversion and piezoelectric property.  相似文献   

2.
The microstructure, electrical properties, and aging behavior of the ZnO-Pr6O11-CoO-Cr2O3-Y2O3-Er2O3 varistor ceramics were investigated for different contents of Er2O3. The microstructure consisted of ZnO grain and an intergranular layer (Pr, Y, and Er-rich phases) as a secondary phase. The increase of Er2O3 content decreased the average grain size and increased the sintered density. As the Er2O3 content increased, the breakdown field increased from 4206 V/cm to 5857 V/cm and the nonlinear coefficient increased from 32.6 to 48.6. The varistor ceramics added with 1.0 mol% Er2O3 exhibited excellent stability by exhibiting −0.2% in the variation rate of the breakdown field and −2.7% in the variation rate of the nonlinear coefficient for aging stress of 0.95 E1 mA/150 °C/24 h.  相似文献   

3.
Ytterbium-doped yttria (Yb3+:Y2O3) nanopowders for transparent ceramics were synthesized by using a carbonate-precipitation method. The characteristics of precursor and powders calcined at different temperatures were investigated. The pure yttria phase can form through calcining at 700 °C. The Yb3+:Y2O3 nanopowders calcined at 1100 °C were well dispersed with a spherical morphology, and had a narrow particle size distribution with a mean particle size of about 70 nm. By using 1100 °C-calcined powders, nearly full dense Yb3+:Y2O3 ceramics were fabricated at 1750 °C for 8 h without any additives under vacuum conditions. The fluorescence spectrum of the sintered ceramics illustrates that there are two emission peaks locating at 1028 and 1071 nm respectively, all corresponding to the 2F5/2 → 2F7/2 transitions of Yb3+ ion. Homogeneous Yb3+:Y2O3 nanopowders synthesized by carbonate-precipitation method are suitable for the fabrication of IR-transparent ceramics.  相似文献   

4.
Y2O3:Eu3+ (1 at.%) translucent nanostructured ceramics with total forward transmission achieving ∼70% of the theoretical limit has been obtained by the transformation-assisted consolidation of custom-made cubic Y2O3:Eu3+ nanopowders under high pressure (HP). Sintering under the pressure of 7.7 GPa and temperatures in the 100-500 °C range leads to the partial cubic-to-monoclinic phase transition that results in two-phase Y2O3:Eu3+ nanoceramics. The average grain size of ceramics d ≤ 50 nm for both Y2O3:Eu3+ polymorph is comparable with crystallite size of initial nanopowders (d ∼ 40 nm), indicating that the grain growth factor is near unity. The phase compositions, morphology, densities, preliminary optical and luminescent properties of synthesized nanostructured ceramics have been studied.  相似文献   

5.
The paper reports the use of La2O3 and ZrO2 co-doping as a composite sintering aid for the fabrication of Tm:Y2O3 transparent ceramics. Two groups of experiments were conducted for investigating the influences of composite sintering aids on the microstructures and the optical properties of Tm:Y2O3 transparent ceramics in contrast to single La3+ and single Zr4+ doped Tm:Y2O3. Samples with composite sintering aids could realize fine microstructures and good optical properties at relatively low sintering temperatures. Grain sizes around 10 μm and transmittances close to theoretical value at wavelength of 2 μm were achieved for the 9 at.% La3+, 3 at.% Zr4+ co-doped samples sintered at 1500-1600 °C. The influences of the composite sintering aids on the emission intensities and the phonon energies of Tm:Y2O3 ceramics were also investigated.  相似文献   

6.
Fine Ce0.8Sm0.2O1.9 (SDC) powders with a fluorite cubic phase were prepared using a urea-combustion technique. The sinterability and microstructural evolution of the resulting ceramics were investigated. The results indicate that the ceramics sintered above 1350 °C display relative densities of about 98.5% along with significant grain growth. With respect to their electrical conduction properties, the specimens sintered above 1350 °C exhibit an excellent total ionic conductivity of 0.082 S cm−1 at 800 °C in air. However, when measured in an N2 + 33.3%H2 atmosphere, a pronounced Warburg feature appears in the impedance plots of the SDC ceramics, together with a significant increase of the total conductivity at measuring temperatures above 550 °C, due to the introduction of a mixed Ce4+/Ce3+ valence state and the generation of the electronic conduction in the reducing atmosphere.  相似文献   

7.
Preparation and electrical characterization of NASICON-type compound, Li1.3Ge1.4Ti0.3Al0.3(PO4)3, are described. The solid solution is obtained with Ge4+ → Ti4+ and Ge4+ → Al3+ substitutions in LiGe2(PO4)3. The powder has been fabricated by a solid state reaction and the structural characteristics of it have been studied by X-ray. Ceramic samples have been sintered by varying the sintering duration from 1 to 3 h. Samples were studied by complex impedance spectroscopy in the frequency range 1 MHz-1.2 GHz and temperature range 300-600 K. Two regions of relaxation dispersion were found. The dispersions were related to the fast Li+ ion transport in the grains and grain boundaries. Variation of the sintering duration has no considerable effect on electrical properties of the ceramics.  相似文献   

8.
The conditions for obtaining a stable Lu2O3:Eu3+ suspension of spherical particles with a diameter of 100 nm using three dispersants possessing an electrosteric stabilizing effect (Dolapix CE 64, Darvan 821 A, Darvan C-N) have been studied. It has been shown that in colloidal processing of ceramics the packing density and microstructure of green bodies can be controlled by regulating the interactions between ceramic particles in the suspension. The influence of the molecular weight and concentration of the dispersant on the stability of Lu2O3:Eu3+ suspensions containing 5-10 vol.% of the solid loading has been considered. It has been determined that use of Dolapix CE 64 with a concentration of 1 mass.% in the alkaline pH range allows to obtain suspensions with high stability and low viscosity (∼1.7 сP). Such suspensions were used to produce compacts with a maximum relative density of ∼52% and uniform density distribution by the pressure slip casting method. The obtained compacts were densified into translucent Lu2O3:Eu3+ ceramics by the vacuum sintering method.  相似文献   

9.
The transparent polycrystalline erbium and ytterbium co-doped yttrium aluminum garnet (Er,Yb:YAG) ceramics with various Yb contents from 5% to 25% were prepared by the solid-state reaction and the vacuum-sintering technique. The in-line transmittances of the mirror-polished ceramics exceed 80% from the visible band to the infrared band. The samples are very compact with few pores. The average grain size of the Er,Yb:YAG ceramic is about 15 μm. The upconversion luminescence spectra, infrared luminescence spectra and luminescence decay curves of the ceramics were observed and discussed. For 1%Er doped YAG ceramic, the best ion ratio of Yb3+ and Er3+ is around 15:1.  相似文献   

10.
The development and photoluminescence analysis of Eu3+or Dy3+ ions in the matrix of lithium titanate (Li2TiO3) ceramics by using a solid state reaction method are reported. Emission spectra of Eu3+:Li2TiO3 ceramics have shown strong red emission at 611 nm (5D0 → 7F2) with λexci = 392 nm (7F0 → 5L6) and from the Dy3+:Li2TiO3, a blue emission at 493 nm (4F9/2 → 6H15/2) and also an yellow emission at 582 nm (4F9/2 → 6H13/2) have been observed with λexci = 366 nm (6H15/2 → 6P5/2). Both the rare-earth ions containing ceramics have displayed their brighter emission performance from their measured spectral results. In addition, X-ray diffraction (XRD), Fourier transform infra red (FTIR) spectroscopy, scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDAX) have been used to characterize the structural properties of (Eu3+ or Dy3+):Li2TiO3 ceramics.  相似文献   

11.
The effects of sintering temperature and the addition of CuO on the microstructure and piezoelectric properties of 0.95(K0.5Na0.5)NbO3-0.05Li(Nb0.5Sb0.5)O3 were investigated. The KNN-5LNS ceramics doped with CuO were well sintered even at 940 °C. A small amount of Cu2+ was incorporated into the KNN-5LNS matrix ceramics and XRD patterns suggested that the Cu2+ ion could enter the A or B site of the perovskite unit cell and replace the Nb5+ or Li+ simultaneously. The study also showed that the introduction of CuO effectively reduced the sintering temperature and improved the electrical properties of KNN-5LNS. The high piezoelectric properties of d33 = 263 pC/N, kp = 0.42, Qm = 143 and tan δ = 0.024 were obtained from the 0.4 mol% CuO doped KNN-5LNS ceramics sintered at 980 °C for 2 h.  相似文献   

12.
High content Er3+ doped (Y0.9La0.1)2O3 transparent ceramics have been prepared by conventional ceramic process. Absorption spectra, mid-infrared, up-conversion and near-infrared emission spectra of Er3+ pumped at 980 nm have been investigated. The mechanisms of energy transfer processes have been discussed. Large values of Judd–Ofelt parameter Ω2 (5.73 × 10–20 cm2) and spectral quality factor X (3.71) have been obtained. The greatly enhanced green up-conversion emission in the high Er3+ doped sample is considered important for the applications in up-converters. The much enhanced mid-infrared 2.7 µm and up-conversion emissions, as well as the depressed near-infrared 1.5 µm emission demonstrate the efficient population inversion of Er3+:4I11/24I13/2 in high Er3+-doped ceramics for the 2.7 µm emission. These results suggest that high Er3+-doped (Y0.9La0.1)2O3 transparent ceramics are promising host materials for the applications of mid-infrared lasers and infrared-to-visible up-converters.  相似文献   

13.
Rare-earth ions (Eu3+, Tb3+) activated magnesium calcium bismuth titanate [(MgCa)2Bi4Ti5O20] ceramics were prepared by conventional solid state reaction method for their structural and luminescence properties. By using XRD patterns, the structural properties of ceramic powders have been analyzed. Emission spectrum of Eu3+:(MgCa)2Bi4Ti5O20 ceramic powder has shown strong red emission at 615 nm (5D0 → 7F2) with an excitation wavelength λexci = 393 nm and Tb3+:(MgCa)2Bi4Ti5O20 ceramic powder has shown green emission at 542 nm (5D4 → 7F5) with an excitation wavelength λexci = 376 nm. In addition, from the measurements of scanning electron microscopy (SEM), Fourier transform-infrared (FTIR) and energy dispersive X-ray analysis (EDAX) results the morphology, structure and elemental analysis of these powder ceramics have been studied.  相似文献   

14.
15.
Nano-size Ca1−χLa2χ/3Cu3Ti4O12 (χ = 0.00, 0.05, 0.10, 0.15 and 0.20) precursor powders were prepared via the sol–gel method and the citrate auto-ignition route and then processed into micro-crystal Ca1−χLa2χ/3Cu3Ti4O12 ceramics under heat treatment. Characterization of the as-obtained ceramics with XRD and SEM showed an average grain sizes of ∼1–2 μm, indicating La3+ amount to have little impact on grain size. The room-temperature dielectric constant of the Ca1−χLa2χ/3Cu3Ti4O12 ceramics sintered at 1000 °C was of the order of 103–104 despite the variation of χ values. Compared with CaCu3Ti4O12, La3+-doped CaCu3Ti4O12 showed a flatter dielectric constant curve related to frequency. It was found that the loss tangent of the Ca1−χLa2χ/3Cu3Ti4O12 ceramics was less than 0.20 in ∼600–105 Hz region, which rapidly decreased to a minimum value of 0.03 by La3+doping with χ = 0.05. Our measurement of the ceramics conductivities (σ) also indicated that the appropriate introduction of La3+ into CaCu3Ti4O12 would distinctly result in its dielectric properties.  相似文献   

16.
The complex perovskite oxide Ba(Zn1/3Nb2/3)O3 (BZN) has been studied for its attractive dielectric properties which place this material interesting for applications as multilayer ceramics capacitors or hyperfrequency resonators. This material is sinterable at low temperature with combined glass phase–lithium salt additions, and exhibits, at 1 MHz very low dielectric losses combined with relatively high dielectric constant and a good stability of this later versus temperature. The 2 wt.% of ZnO–SiO2–B2O3 glass phase and 1 wt.% of LiF-added BZN sample sintered at 900 °C exhibits a relative density higher than 95% and attractive dielectric properties: a dielectric constant ?r of 39, low dielectrics losses (tan(δ) < 10−3) and a temperature coefficient of permittivity τ? of 45 ppm/°C−1. The 2 wt.% ZnO–SiO2–B2O3 glass phase and 1 wt.% of B2O3-added BZN sintered at 930 °C exhibits also attractive dielectric properties (?r = 38, tan(δ) < 10−3) and it is more interesting in terms of temperature coefficient of the permittivity (τ? = −5 ppm/°C). Their good dielectric properties and their compatibility with Ag electrodes, make these ceramics suitable for L.T.C.C applications.  相似文献   

17.
Sub-micronic, spherical Y2O3:Yb/Er particles comprising clustered nano-units (70 nm) were prepared via ultrasonic spray pyrolysis from pure nitrate precursor solutions with different Yb/Er dopant ratios. The particles were additionally thermally treated at 1100 °C for 12, 24 and 48 h. The structural and morphological characteristics of particles were studied by X-ray powder diffraction, Fourier transform infrared spectroscopy, field-emission scanning electron microscopy, energy dispersive X-ray analysis and specific surface area (BET) and were further correlated with their advanced optical properties. For the recorded up-conversion emissions, originating from the following Er3+ transitions: [2H9/24I15/2] in blue (407–420 nm); [2H11/2, 4S3/24I15/2] green: 510–590 nm; and [4F9/24I15/2] in red (640–720 nm) spectral region, the corresponding lifetimes were acquired in the wide temperature range (10–300 K). The most intense green up-conversion emission with the long decay of 550 ms is recorded for Y1.97Yb0.02Er0.01O3 particles thermally treated at 1100 °C for 24 h.  相似文献   

18.
3 at.% Er3+, x at.% Ho3+: SrF2 (x = 0, 0.05, 0.1, 0.5, 1, 2) transparent ceramics, as the potential material for the 2.7 μm solid-state laser, were fabricated by hot-pressed sintering. XRD, TEM, SEM, and EDS measurements were used to investigate the phase composition, morphology, microstructure, and distribution of the elements of the nanoparticles and transparent ceramics. Results showed that the Er3+ ions and Ho3+ ions do not alter the SrF2 crystal structure, and they are distributed uniformly in the sample. With the increase of the Ho3+ doping concentration, the lattice parameter decreased from 5.799 Å to 5.784 Å, and the average grain size decreased gradually. The maximum transmittance of as-obtained ceramics is approximately 93 % which is close to the theoretical transmittance of SrF2. Moreover, the absorption spectra, emission spectra, and the lifetime of Er3+ and Ho3+ were investigated. The energy transfer processes between Er3+ and Ho3+ were discussed. After co-doping Ho3+, the lifetime difference between Er3+:4I11/2 and Er3+:4I13/2 levels was shortened from 8.50 ms to 1.12 ms. All the results show that the incorporation of Ho3+ with proper doping concentration is beneficial for achieving 2.7 μm laser output in Er3+: SrF2 transparent ceramics.  相似文献   

19.
TiO2 varistors doped with 0.2 mol% Ca, 0.4 mol% Si and different concentrations of Ta were obtained by ceramic sintering processing at 1350 °C. The effect of Ta on the microstructures, nonlinear electrical behavior and dielectric properties of the (Ca, Si, Ta)-doped TiO2 ceramics were investigated. The ceramics have nonlinear coefficients of α = 3.0–5.0 and ultrahigh relative dielectric constants which is up to 104. Experimental evidence shows that small quantities of Ta2O5 improve the nonlinear properties of the samples significantly. It was found that an optimal doping composition of 0.8 mol% Ta2O5 leads to a low breakdown voltage of 14.7 V/mm, a high nonlinear constant of 4.8 and an ultrahigh electrical permittivity of 5.0 × 104 and tg δ = 0.66 (measured at 1 kHz), which is consistent with the highest and narrowest grain boundary barriers of the ceramics. In view of these electrical characteristics, the TiO2–0.8 mol% Ta2O5 ceramic is a viable candidate for capacitor–varistor functional devices. The characteristics of the ceramics can be explained by the effect and the maximum of the substitution of Ta5+ for Ti4+.  相似文献   

20.
KTiNbO5 (KTN) and K3Ti5NbO14 (3K5TN) ceramics sintered at 1150 °C and 1125 °C, respectively, exhibited a dense, homogeneous microstructure with a high relative density (≥96% of the theoretical density). Abnormal grain growth occurred in both specimens during sintering, and large (002) and (001) grains developed in KTN and 3K5TN ceramics, respectively. A dielectric constant (εr) of 13 and a dielectric loss of 2.9% at 10 MHz were obtained from KTN ceramics sintered at 1150 °C. The 3K5TN ceramics sintered at 1125 °C showed an εr of 15 and a dielectric loss of 12% at 10 MHz. The resistivity of KTN and 3K5TN ceramics was low and their εr and dielectric loss values displayed low-frequency dispersion (LFD); the presence of K+ ions between the layers could be responsible for their low resistivity and LFD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号