首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
p+-n junction diodes for sub-0.25-μm CMOS circuits were fabricated using focused ion beam (FIB) Ga implantation into n-Si (100) substrates with background doping of Nb=(5-10)×10 15 and Nb+=(1-10)×1017 cm-3. Implant energy was varied from 2 to 50 keV at doses ranging from 1×1013 to 1×1015 cm-2 with different scan speeds. Rapid thermal annealing (RTA) was performed at either 600 °C or 700°C for 30 s. Diodes fabricated on Nb+ with 10-keV Ga+ exhibited a leakage current (IR) 100× smaller than those fabricated with 50-keV Ga+. Tunneling was determined to be the major current transport mechanism for the diodes fabricated on Nb+ substrates. An optimal condition for IR on Nb+ substrates was obtained at 15 keV/1×1015 cm-2. Diodes annealed at 600°C were found to have an IR 1000× smaller than those annealed at 700°C. I-V characteristics of diodes fabricated on Nb substrates with low-energy Ga+ showed no implant energy dependence. I-V characteristics were also measured as a function of temperature from 25 to 200°C. For diodes implanted with 15-keV Ga +, the cross-over temperatures between Idiff and Ig-r occurred at 106°C for Nb + and at 91°C for Nb substrates  相似文献   

2.
The work performed to date on the implantation of megaelectronvolt (MeV) energy ions of shallow donor (Si, S), shallow acceptor (Be), compensation (B, O, N, Fe, Co, Ti), and rare-earth (Er) species in III-V GaAs and InP compounds is reviewed. The optimum annealing conditions, the resulting carrier concentrations, and the lattice quality of the material are discussed. For the buried implants, the lattice damage and the electrical properties of the material are almost independent of the implant energy. For MeV Be+ implants the outdiffusion of Be during annealing is not observed, unlike in the case of shallow keV Be + implants. The MeV energy Fe+ or Co+ implants performed at 200°C into n-type InP, and Ti implants into p-type InP gave thermally stable buried high-resistance layers. The performance of microwave devices like vertical p-i-n, varactor, and mixer diodes and an optical device like a heterostructure laser made using MeV energy ion implantation is discussed. The results of MeV implantation in obtaining interdevice isolation of multilayer structures like HBTs are also discussed  相似文献   

3.
Shallow p+-n and n+-p junctions were formed in germanium preamorphized Si substrates. Germanium implantation was carried out over the energy range of 50-125 keV and at doses from 3×1014 to 1×1015 cm-2. p +-n junctions were formed by 10-keV boron implantation at a dose of 1×1015 cm-2. Arsenic was implanted at 50 keV at a dose of 5×1015 cm-2 to form the n+-p junctions. Rapid thermal annealing was used for dopant activation and damage removal. Ge, B, and As distribution profiles were measured by secondary ion mass spectroscopy. Rutherford backscattering spectrometry was used to study the dependence of the amorphous layer formation on the energy and dose of germanium ion implantation. Cross-sectional transmission electron microscopy was used to study the residual defects formed due to preamorphization. Complete elimination of the residual end-of-range damage was achieved in samples preamorphized by 50-keV/1×1015 cm-2 germanium implantation. Areal and peripheral leakage current densities of the junctions were studied as a function of germanium implantation parameters. The results show that high-quality p+-n and n+-p junctions can be formed in germanium preamorphized substrates if the preamorphization conditions are optimized  相似文献   

4.
InP/InGaAs heterojunction bipolar transistors (HBTs) with low resistance, nonalloyed TiPtAu contacts on n+-InP emitter and collector contacting layers have been demonstrated with excellent DC characteristics. A specific contact resistance of 5.42×10-8 Ω·cm2, which, to the best of our knowledge, is the lowest reported for TiPtAu on n-InP, has been measured on InP doped n=6.0×1019 cm-3 using SiBr4. This low contact resistance makes TiPtAu contacts on n-InP viable for InP/InGaAs HBTs  相似文献   

5.
The impact of Co incorporation on the electrical characteristics has been investigated in n+/p junction formed by dopant implantation into CoSi2 and drive-in anneal. The junctions were formed by As+ (30 or 40 keV, 1×1016 cm -2) implantation into 35 nm-thick CoSi2 followed by drive-in annealing at 900°C for 30 s in an N2 ambient. Deeper junction implanted by As+ at 40 keV was not influenced by the Co incorporation. However, for shallower junction implanted by As + at 30 keV, incorporation of Co atoms increased its leakage current, which were supposed to be dissociated from the CoSi2 layer by silicide agglomeration during annealing. The mechanism of such a high leakage current was found to be Poole-Frenkel barrier lowering induced by high density of Co traps  相似文献   

6.
The first N-p-n InP/InGaAs heterojunction bipolar transistors (HBTs) with p-type carbon doping in InGaAs are reported. P-type carbon doping in the InGaAs base has been achieved by gas-source molecular beam epitaxy (GSMBE) using carbon tetrachloride (CCl4) as the dopant source. The resulting hole concentration in the base was 1×1019 cm-3. HBTs fabricated using material from this growth method display good I-V characteristics with DC current gain above 500. This verifies the ability to use carbon doping to make a heavily p-type InGaAs base of an N-p-n HBT  相似文献   

7.
The fabrication and electrical characteristics of p-channel AlGaAs/GaAs heterostructure FETs with self-aligned p+ source-drain regions formed by low-energy co-implantation of Be and F are reported. The devices utilize a sidewall-assisted refractory gate process and are fabricated on an undoped AlGaAs/GaAs heterostructure grown by MOVPE. Compared with Be implantation alone, the co-implantation of F+ at 8 keV with 2×1014 ions/cm2 results in a 3× increase in the post-anneal Be concentration near the surface for a Be+ implantation at 15 keV with 4×1014 ions/cm2. Co-implantation permits a low source resistance to be obtained with shallow p+ source-drain regions. Although short-channel effects must be further reduced at small gate lengths, the electrical characteristics are otherwise excellent and show a 77-K transconductance as high as 207 mS/mm for a 0.5-μm gate length  相似文献   

8.
Current-voltage characteristics of Au contacts formed on buried implanted oxide silicon-on-insulator (SOI) structures are discussed, which indicate that the dominant transport mechanism is space-charge-limited current (SCLC) conduction in the presence of deep-level states. The deep-level parameters, determined using a simple analysis, appear to be sensitive to anneal conditions used and subsequent processing. Silicon implanted with 1.7×1018 cm-2 oxygen ions at 150 keV following a 1200°C anneal for 3 h shows deep level 0.37 eV below the conduction band edge with a concentration of unoccupied traps of ~ 2×1015 cm-3 . In contrast, arsenic ion implantation, in the 1200°C annealed material with a dose of 1.5×1012 cm-2 at 60 keV and activated by rapid thermal annealing (RTA), introduces a deep level 0.25 eV below the conduction band edge with an unoccupied trap concentration of ~6×1017 cm-2  相似文献   

9.
This work investigates the shallow CoSi2 contacted junctions formed by BF2+ and As+ implantation, respectively, into/through cobalt silicide followed by low temperature furnace annealing. For p+n junctions fabricated by 20 keV BF2+ implantation to a dose of 5×1015 cm-2, diodes with a leakage current density less than 2 nA/cm2 at 5 V reverse bias can be achieved by a 700°C/60 min annealing. This diode has a junction depth less than 0.08 μm measured from the original silicon surface. For n+p junctions fabricated by 40 keV As+ implantation to a dose of 5×1015 cm-2, diodes with a leakage current density less than 5 nA/cm2 at 5 V reverse bias can be achieved by a 700°C/90 min annealing; the junction depth is about 0.1 μm measured from the original silicon surface. Since the As+ implanted silicide film exhibited degraded characteristics, an additional fluorine implantation was conducted to improve the stability of the thin silicide film. The fluorine implantation can improve the silicide/silicon interface morphology, but it also introduces extra defects. Thus, one should determine a tradeoff between junction characteristics, silicide film resistivity, and annealing temperature  相似文献   

10.
A new post-metallization annealing technique was developed to improve the quality of metal-oxide-semiconductor (MOS) devices using SiO 2 films formed by a parallel-plate remote plasma chemical vapor deposition as gate insulators. The quality of the interface between SiO2 and crystalline Si was investigated by capacitance-voltage (C-V) measurements. An H2O vapor annealing at 270°C for 30 min efficiently decreased the interface trap density to 2.0×1010 cm-2 eV-1, and the effective oxide charge density from 1×10 12 to 5×109 cm-2. This annealing process was also applied to the fabrication of Al-gate polycrystalline silicon thin film transistors (poly-Si TFT's) at 270°C. In p-channel poly-Si TFT's, the carrier mobility increased from 60-400 cm2 V-1 s-1 and the threshold voltage decreased from -5.5 to -1.7 V  相似文献   

11.
InGaAs junction field-effect transistors (JFETs) are fabricated in metalorganic chemical-vapor-deposition (MOCVD)-grown n-InGaAs and semi-insulating Fe:InP layers on n+-InP substrate with a P/Be co-implanted p+ self-aligned gate. The device exhibits a transconductance of 245 mS/mm (intrinsic transconductance of 275 mS/mm) at zero gate bias and good pinch-off behavior for a gate length of 0.5 μm. The effective electron velocity is deduced to be 2.8×107 cm/s, equal to the theoretical prediction  相似文献   

12.
The current-voltage (I-V) characteristics of ultrashallow p+ -n and n+-p diodes, obtained using very-low-energy (<500-eV) implantation of B and As, are presented. the p+-n junctions were formed by implanting B+ ions into n-type Si (100) at 200 eV and at a dose of 6×1014 cm-2, and n+-p junctions were obtained by implanting As+ ions into p-type (100) Si at 500 eV and at a dose 4×1012 cm-2. A rapid thermal annealing (RTA) of 800°C/10 s was performed before I-V measurements. Using secondary ion mass spectrometry (SIMS) on samples in-situ capped with a 20-nm 28Si isotopic layer grown by a low-energy (40 eV) ion-beam deposition (IBD) technique, the depth profiles of these junctions were estimated to be 40 and 20 nm for p+-n and n+-p junctions, respectively. These are the shallowest junctions reported in the literature. The results show that these diodes exhibit excellent I-V characteristics, with ideality factor of 1.1 and a reverse bias leakage current at -6 V of 8×10-12 and 2×10-11 A for p+-n and n+-p diodes, respectively, using a junction area of 1.96×10-3 cm2  相似文献   

13.
A hot-electron InGaAs/InP heterostructure bipolar transistor (HBT) is discussed. A unity-current-gain cutoff frequency of 110 GHz and a maximum frequency of oscillation of 58 GHz are realized in transistors with 3.2×3.2-μm2 emitter size. Nonequilibrium electron transport, with an average electron velocity approaching 4×107 cm/s through the thin (650 Å) heavily doped (p=5×1019 cm-3) InGaAs base and 3000-Å-wide collector space-charge region, results in a transit delay of 0.5 ps corresponding to an intrinsic cutoff frequency of 318 GHz  相似文献   

14.
Electron pulse annealing has been used to activate implanted layers in InP without the phosphorus loss dominance in earlier work. Reduced pulse energies were employed at which the phosphorus loss could be curtailed but which necessitated supplemental thermal heating of the substrate for activation. Relatively shallow implants (75 keV, 4 × 1014Si+cm-2) so annealed show minimum yields of ∼ 5% from backscattering and are doped to over 1019cm-3with mobilities of 500 cm2V-1sec-1.  相似文献   

15.
Kal  S. Kasko  I. Ryssel  H. 《Electronics letters》1994,30(3):272-274
The single crystal growth of Si-Ge alloy was studied in germanium implanted silicon substrate. Ge+ ions were implanted on 〈100〉, p-type silicon substrate at a dose of 1016 cm-2. As implanted samples were annealed sequentially at a temperature of 700-1000°C for different times in an RTA system to crystallise the amorphous layer. The SNMS technique was used to determine the compositional analysis, and RBS in the channelling mode was performed to characterise the samples  相似文献   

16.
Encapsulated rapid thermal annealing (RTA) has been used in the fabrication of indium phosphide (InP) power metal-insulator-semiconductor field-effect transistors (MISFETs) with ion-implanted source, drain, and active channel regions. The MISFETs had a gate length of 1.4 μm. Six to ten gate fingers per device, with individual gate finger widths of 100 or 125 μm, were used to make MISFETs with total gate widths of 0.75, 0.8, or 1 mm. The source and drain contact regions and the channel region of the MISFETs were fabricated using silicon implants in semi-insulating InP at energies from 60 to 360 keV with doses from 1×1012 to 5.6×1014 cm-2. The implants were activated using RTA at 700°C for 30 s in N2 or H2 ambients using a silicon nitride encapsulant. The high-power, high-efficiency MISFETs were characterized at 9.7 GHz, and the output microwave power density for the RTA conditions used was as high as 2.4 W/mm. For a 1-W input at 9.7 GHz gains up to 3.7 dB were observed, with an associated power-added efficiency of 29%. The output power density was 70% greater than that reported for GaAs MESFETs  相似文献   

17.
We report on a new self-alignment (SA) process and microwave performance of ALE/MOCVD grown InP/InGaAs heterojunction bipolar transistors (HBT's) with a base doping concentration of 1×102 0 cm-3. We obtained fT of 161 GHz and fmax of 167 GHz with a 2×10 μm emitter. These high values indicate the best performance of InP/InGaAs HBT's ever reported, in so far as we know. These values were attained by reducing the base resistance using ALE/MOCVD and base-collector capacitance using a new SA process. These results indicate the great potential of these devices for ultrahigh-speed application  相似文献   

18.
Fully ion-implanted n+ self-aligned GaAs MESFETs with Au/WSiN refractory metal gates have been fabricated by adopting neutral buried p-layers formed by 50-keV Be-implantation. S-parameter measurements and equivalent circuit fittings are discussed. When the Be dose is increased from 2×1012 cm-2 to 4×1012 cm-2, the maximum value of the cutoff frequency with a 0.2-μm gate falls off from 108 to 78 GHz. This is because a neutral buried player makes the intrinsic gate-source capacitance increase markedly, while its influence on gate-drain capacitance and gate-source fringing capacitance is negligible. The maximum oscillation frequency recovers, however, due primarily to the drain conductance suppression by the higher-concentration buried p-layer. An equivalent value of over 130 GHz has been obtained for both 0.2-μm-gate GaAs MESFETs  相似文献   

19.
p+-n shallow-junction diodes were fabricated using on-axis Ga69 implantation into crystalline and preamorphized Si, at energies of 25-75 keV for a dose of 1×1015/cm 2, which is in excess of the dosage (2×1014/cm2) required to render the implanted layer amorphous. Rapid thermal annealing at 550-600°C for 30 s resulted in the solid-phase epitaxial (SPE) regrowth of the implanted region accompanied by high Ga activation and shallow junction (60-130 nm) formation. Good diode electrical characteristics for the Ga implantation into crystalline Si were obtained; leakage current density of 1-1.5 nA/cm2 and ideality factor of 1.01-1.03. Ga implantation into preamorphized Si resulted in a two to three times decrease in sheet resistance, but a leakage current density orders of magnitude higher  相似文献   

20.
The H2 cleaning technique was examined as the precleaning of the gate oxidation for 4H-SiC MOSFETs. The device had a channel width and length of 150 and 100 μm, fabricated on the p-type epitaxial layer of 3×1016 cm-3. The gate oxidation was performed after the conventional RCA cleaning, and H2 annealing at 1000°C. The obtained channel mobility depends on the pre-cleaning process strongly, and was achieved 20 cm2/N s in the H2 annealed sample. The effective interface-state density was also measured by the MOS capacitors fabricated on the same chips, resulting 1.8×1012 cm-2 from the photo-induced C-V method  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号