首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到3条相似文献,搜索用时 0 毫秒
1.
An isothermal section of the phase diagram for the system Cu-Rh-O at 1273 K has been established by equilibration of samples representing eighteen different compositions, and phase identification after quenching by optical and scanning electron microscopy (SEM), X-ray diffraction (XRD), and energy dispersive analysis of X-rays (EDX). In addition to the binary oxides Cu2O, CuO, and Rh2O3, two ternary oxides CuRhO2 and CuRh2O4 were identified. Both the ternary oxides were in equilibrium with metallic Rh. There was no evidence of the oxide Cu2Rh2O5 reported in the literature. Solid alloys were found to be in equilibrium with Cu2O. Based on the phase relations, two solid-state cells were designed to measure the Gibbs energies of formation of the two ternary oxides. Yttria-stabilized zirconia was used as the solid electrolyte, and an equimolar mixture of Rh+Rh2O3 as the reference electrode. The reference electrode was selected to generate a small electromotive force (emf), and thus minimize polarization of the three-phase electrode. When the driving force for oxygen transport through the solid electrolyte is small, electrochemical flux of oxygen from the high oxygen potential electrode to the low potential electrode is negligible. The measurements were conducted in the temperature range from 900 to 1300 K. The thermodynamic data can be represented by the following equations: {fx741-1} where Δf(ox) G o is the standard Gibbs energy of formation of the interoxide compounds from their component binary oxides. Based on the thermodynamic information, chemical potential diagrams for the system Cu-Rh-O were developed.  相似文献   

2.
The tie-lines delineating equilibria between CoO-NiO and Co-Ni solid solutions in the ternary Co-Ni-O system at 1373 K have been determined by electron microprobe andedax point count analysis of the oxide phase equilibrated with the alloy. The oxygen potentials corresponding to the tie-line compositions have been measured using a solid oxide galvanic cell with calcia-stabilized zirconia electrolyte and Ni + NiO reference electrode. Activities in the metallic and oxide solid solution have been derived using a new Gibbs-Duhem integration technique. Both phases exhibit small positive deviations from ideality; the values ofG E/X 1 X 2 are 2640 J mol−1 for the metallic phase and 2870 J mol−1 for the oxide solid solution.  相似文献   

3.
A new binary Co1/2Fe1/2(H2PO4)2·2H2O was synthesized by a simple, rapid and cost-effective method using CoCO3-Fe(c)-H3PO4 system at ambient temperature. Thermal treatment of the obtained Co1/2Fe1/2(H2PO4)2·2H2O at 600 °C yielded as a binary cobalt iron cyclotetraphosphate CoFeP4O12. The FTIR and XRD results of the synthesized Co1/2Fe1/2(H2PO4)2·2H2O and its final decomposed product CoFeP4O12 indicate the monoclinic phases with space group P21/n and C2/c, respectively. The particle morphologies of both binary metal compounds appear the flower-like microparticle shapes. Room temperature magnetization results show novel superparamagnetic behaviors of the Co1/2Fe1/2(H2PO4)2·2H2O and its final decomposed product CoFeP4O12, having no hysteresis loops in the range of ±10,000 Oe with the specific magnetization values of 0.045 and 12.502 emu/g at 10 kOe, respectively. The dominant physical properties of the obtained binary metal compounds (Co1/2Fe1/2(H2PO4)2·2H2O and CoFeP4O12) are compared with the single compounds (M(H2PO4)2·2H2O and M2P4O12; where M = Co, Fe), indicating the presence of Co ions in substitution position of Fe ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号