首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
This paper investigated the secondary cracking of gasoline and diesel from the catalytic pyrolysis of Daqing atmospheric residue on catalyst CEP-1 in a fluidized bed reactor.The results show that the secondary cracking reactivity of gasoline and diesel is poor,and the yield of total light olefins is only about 10%(by mass).As reaction temperature increases,ethylene yield increases,butylene yield decreases,and propylene yield shows a maximum.The optimal reaction temperature is about 670℃for the production of light olefins.With the enhance- ment of catalyst-to-oil mass ratio and steam-to-oil mass ratio,the yields of light olefins increase to some extent. About 6.30%of the mass of total aromatic rings is converted by secondary cracking,indicating that aromatic hy- drocarbons are not easy to undergo ring-opening reactions under the present experimental conditions.  相似文献   

2.
A new method of upgrading 6# solvent oils using different ionic liquids as catalysts in a continuous apparatus is studied in this paper. The results show that aromatics, olefins and small quantity of sulfurs can be removed simultaneously. Using complex ionic liquid modified with CuCl as catalyst, olefins are removed completely, the mass concentrations of aromatics and sulfurs in solvent oil are 0.36% and 0.0058%, respectively, and the bromic index is zero. The sulfur removal rate decreases gradually with increasing of running time. The refined 6# solvent oil is corresponded to the quality standards of GB16629-1996, which request that the mass concentrations of aro-matics, sulfurs and bromic index are 1%, 0.012% and 1000, respectively. The loss of solvent oil is less than 3%.  相似文献   

3.
Methanol-to-olefins(MTO) is industrially applied to produce ethylene and propylene using methanol converted from coal,synthetic gas,and biomass.SAPO-34 zeolites,as the most efficient catalyst in MTO process,are subject to the rapid deactivation due to coke deposition.Recent work shows that steam regeneration can provide advantages such as low carbon dioxide emission and enhanced light olefins yield in MTO process,compared to that by air regeneration.A kinetic study on the steam regeneration of spent SAPO-34 catalyst has been carried out in this work.In doing so,we first investigated the effect of temperature on the regeneration performance by monitoring the crystal structure,acidity,residual coke properties and other structural parameters.The results show that with the increase of regeneration temperature,the compositions of residual coke on the catalyst change from pyrene and phenanthrene to naphthalene,which are normally considered as active hydrocarbon pool species in MTO reaction.However,when the regeneration temperature is too high,nitrogen oxides can be found in the residual coke.Meanwhile,as the regeneration temperature increases,the quantity of residual coke reduces and the acidity,BET surface area and pore structure of the regenerated samples can be better recovered,resulting in prolonging catalyst lifetime.We have further derived the kinetics of steam regeneration,and obtained an activation energy of about 177.8 kJ·mol~(-1).Compared that with air regeneration,the activation energy of steam regeneration is higher,indicating that the steam regeneration process is more difficult to occur.  相似文献   

4.
Preparation of Hydrogen through Catalytic Steam Reforming of Bio-oil   总被引:3,自引:0,他引:3  
Hydrogen was prepared via catalytic steam reforming of bio-oil which was obtained from fast pyrolysis of biomass in a fluidized bed reactor. Influential factors including temperature, weight hourly space velocity (WHSV) of bio-oil, mass ratio of steam to bio-oil (S/B) as well as catalyst type on hydrogen selectivity and other desirable gas products were investigated. Based on hydrogen in stoichiometric potential and carbon balance in gaseous phase and feed, hydrogen yield and carbon selectivity were examined. The experimental results show that higher temperature favors the hydrogen selectivity by H2 mole fraction in gaseous products stream and it plays an important role in hydrogen yield and carbon selectivity. Higher hydrogen selectivity and yield, and carbon selectivity were obtained at lower bio-oil WHSV. In catalytic steam reforming system a maximum steam concentration value exists, at which hydrogen selectivity and yield, and carbon selectivity keep constant. Through experiments, preferential operation conditions were obtained as follows: temperature 800~850℃, bio-oil WHSV below 3.0 h-1, and mass ratio of steam to bio-oil 10~12. The performance tests indicate that Ni-based catalysts are optional, especially Ni/a-Al2O3 effective in the steam reforming process.  相似文献   

5.
The kinetics of liquid-phase hydrogenation of benzene in misch metal nickel-five (MlNi5) and benzene slurry system was studied by investigating the influences of the reaction temperature, pressure, alloy concentration and stirring speed on the mass transfer-reaction processes inside the slurry. The results show that the whole process is controlled by the reaction at the surface of the catalyst. The mass transfer resistance at gas-liquid interface and that from the bulk liquid phase to the surface of the catalyst particles are negligible. The apparent reaction rate is zero order for benzene concentration and first order for hydrogen concentration in the liquid phase. The kinetic model obtained fits the experimental data very well. The apparent activation energy of the hydrogen absorption reaction of MlNi5-C6H6 slurry system is 42.16 kJ.mol-1.  相似文献   

6.
In this paper, pyrolysis of Indonesian oil sands(IOS) was investigated by two different heating methods to develop a better understanding of the microwave-assisted pyrolysis. Thermogravimetric analysis was conducted to study the thermal decomposition behaviors of IOS, showing that 550 °C might be the pyrolysis final temperature. A explanation of the heat–mass transfer process was presented to demonstrate the influence of microwave-assisted pyrolysis on the liquid product distribution. The heat–mass transfer model was also useful to explain the increase of liquid product yield and heavy component content at the same heating rate by two different heating methods. Experiments were carried out using a fixed bed reactor with and without the microwave irradiation. The results showed that liquid product yield was increased during microwave induced pyrolysis,while the formation of gas and solid residue was reduced in comparison with the conventional pyrolysis. Moreover, the liquid product characterization by elemental analysis and GC–MS indicated the significant effect on the liquid chemical composition by microwave irradiation. High polarity substances(ε N 10 at 25 °C), such as oxyorganics were increased, while relatively low polarity substances(ε b 2 at 25 °C), such as aliphatic hydrocarbons were decreased, suggesting that microwave enhanced the relative volatility of high polarity substances. The yield improvement and compositional variations in the liquid product promoted by the microwave-assisted pyrolysis deserve the further exploitation in the future.  相似文献   

7.
The effects of reduction procedure, reaction temperature and composition of feed gas on the activity of a CuO-ZnO-Al2O3 catalyst for liquid phase methanol synthesis were studied. An optimized procedure different from conventional ones was developed to obtain higher activity and better stability of the catalyst. Both CO and CO2 in the feed gas were found to be necessary to maintain the activity of catalyst in the synthesis process. Reaction temperature was limited up to 523K, otherwise the catalyst will be deactivated rapidly. Experimental results show that the catalyst deactivation is caused by sintering and fouling, and the effects of CO and CO2 on the catalyst activity are also investigated. The experimental results indicate that the formation of water in the methanol synthesis is negligible when the feed gas contains both CO and CO2. The mechanism for liquid-phase methanol synthesis was discussed and it differed slightly from that for gas-phase synthesis.  相似文献   

8.
A reliable kinetic model to describe the effects of various factors on the reaction rate and selectivity of pinene isomerization is developed. Furthermore, computational fluid dynamics(CFD) is applied to simulate the solid–liquid dispersion in reactor. The catalyst Ti M is obtained by improving the composition and structure of hydrated titanium dioxide. The kinetic equation of pinene isomerization is deduced based on reaction mechanism and catalyst deactivation model. The kinetic equation of pinene isomerization reaction is fitted, and the results show that the fitted equation is correlated with the experimental data. The rate and selectivity of pinene isomerization reaction are affected by the amount of catalyst, deactivation of catalyst, structure of catalyst, reaction temperature and water content of catalyst. The solid–liquid distribution of the reactor is calculated by computational fluid dynamics numerical simulation, and the solid–liquid dispersion in commercial scale reactor is more uniform than that in lab-scale reactor.  相似文献   

9.
Light olefins(C_2–C_4) are fundamental building blocks for the manufacture of polymers, chemical intermediates,and solvents. In this work, we realized a composite catalyst, comprising Mn_xZr _yoxides and SAPO-34 zeolite,which can convert syngas(CO + H_2) into light olefins. Mn_xZr_yoxide catalysts with different Mn/Zr molar ratios were facilely prepared using the coprecipitation method prior to physical mixing with SAPO-34 zeolite. The redox properties, surface morphology, electronic state, crystal structure, and chemical elemental composition of the catalysts were examined using H_2-TPR, SEM, XPS, XRD, and EDS techniques, respectively. Tandem reactions involved activation of CO and subsequent hydrogenation over the metal oxide catalyst, producing methanol and dimethyl ether as the main reaction intermediates, which then migrated onto SAPO-34 zeolite for light olefins synthesis. Effects of temperature, pressure and reactant gas flow rate on CO conversion and light olefins selectivity were investigated in detail. The Mn_1Zr_2/SAPO-34 catalyst(Mn/Zr ratio of 1:2) attained a CO conversion of 10.8% and light olefins selectivity of 60.7%, at an optimized temperature, pressure and GHSV of 380 °C, 3MPa and 3000 h~(-1) respectively. These findings open avenues to exploit other metal oxides with CO activation capabilities for a more efficient syngas conversion and product selectivity.  相似文献   

10.
The acid-functionalized ionic liquid ([HSO3Pmim]HSO4) was synthesized by a two-step method. Nuclear magnetic resonance (NMR) and Fourier transform infrared spectroscopy (FT-IR) show that the synthesis method is feasible and high purity of ionic liquid can be obtained. Using [HSO3Pmim]HSO4 as the catalyst, we studied the reaction kinetics of synthesizing sec-butyl alcohol from sec-butyl acetate and methanol by transesterification in a high-pressure batch reactor. The effects of temperature, initial molar ratio of methanol to ester, and catalyst concentration on the conversion of sec-butyl acetate were studied. Based on its possible reaction mechanism, a ho-mogeneous kinetic model was established. The results show that the reaction heatΔH is 10.94 × 103 J·mol?1, so the reaction is an endothermic reaction. The activation energies Ea+and Ea?are 60.38 × 103 and 49.44 × 103 J·mol?1, respectively.  相似文献   

11.
利用小型固定床实验装置对比研究了轻烃模型化合物的催化裂解性能,从优到劣的顺序依次是正构烯烃、正构烷烃、环烷烃、异构烷烃、芳香烃。正构烷烃、异构烷烃与环烷烃催化裂解的总低碳烯烃收率有较大差别,但是总低碳烯烃选择性却均在56.57%左右。研究了直馏石脑油的催化裂解性能,发现乙丙烯收率和总低碳烯烃收率随反应温度的升高及重时空速的降低而逐渐增大;在反应温度680℃、重时空速4.32 h-1和水油稀释比0.35的条件下,乙丙烯收率35.87%(质量),总低碳烯烃收率为41.94%(质量)。针对轻烃催化裂解提出了原料特征化参数KF,它是原料H/C原子比、相对密度与分子量的函数,能较好地表征轻烃原料的催化裂解性能。  相似文献   

12.
流化催化裂化汽油改质和增产低碳烯烃的研究   总被引:4,自引:0,他引:4  
采用GL型催化剂,在小型固定流化床实验装置上考察了反应温度、剂油比、空速和水油比等操作条件对流化催化裂化(FCC)汽油催化改质汽油的产品分布、低碳烯烃(丁烯、丙烯和乙烯)产率和族组成的影响。实验结果表明,在一定反应条件下,FCC汽油通过催化改质可以降低烯烃含量,提高芳烃含量和辛烷值,在满足新汽油标准的同时提高了低碳烯烃的产率。此外,较高的反应温度、剂油比和水油比以及较低的空速有利于FCC汽油催化改质和增产低碳烯烃。  相似文献   

13.
李丽  孟祥海  王刚  徐春明  高金森 《化工学报》2010,61(9):2365-2372
利用提升管催化裂解实验装置研究了加拿大合成原油瓦斯油HGO和LGO的催化裂解反应规律和裂解产品性质。发现总低碳烯烃(乙烯、丙烯和丁烯)产率随反应温度和剂油比的增大存在最大值,随反应时间的延长而减小,随水油比的增大而升高。实验确定了HGO催化裂解的优化反应条件:反应温度620~640℃、剂油比16、反应时间2 s、水油比0.5左右。在此反应条件下,乙烯、丙烯和总低碳烯烃产率分别可达9.0%(质量),15.8%(质量)和32.6%(质量)。催化裂解汽油馏分、柴油馏分和重油馏分含有大量的芳香烃,其中催化裂解汽油馏分总芳香烃含量在80%(质量)以上,主要是甲苯和C8芳香烃;催化裂解柴油馏分总芳香烃含量在60%(质量)以上,主要是单环和双环芳香烃;催化裂解重油馏分总芳香烃含量在70%(质量)以上,主要是多环芳香烃。  相似文献   

14.
The effects of reaction temperature, mass ratio of catalyst to oil, space velocity, and mass ratio of water to oil on the product distribution, the yields of light olefins (light olefins including ethylene, propylene and butylene) and the composition of the fluid catalytic cracking (FCC) gasoline upgraded over the self-made catalyst GL in a confined fluidized bed reactor were investigated. The experimental results showed that FCC gasoline was obviously reformulated under appropriate reaction conditions. The olefins (olefins with C atom number above 4) content of FCC gasoline was markedly reduced, and the aromatics content and octane number were increased. The upgraded gasoline met the new standard of gasoline, and meanwhile, higher yields of light olefins were obtained. Furthermore, higher reaction temperature, higher mass ratio of catalyst to oil, higher mass ratio of water to oil, and lower space velocity were found to be beneficial to FCC gasoline reformulation and light olefins production.  相似文献   

15.
采用固定流化床催化裂化试验装置,以中国石油兰州石化公司3.0 Mt·a-1重油催化裂化装置所用原料油为原料,考察反应温度和剂油质量比对重油催化裂解制低碳烯烃性能的影响,在确定的适宜操作条件下研究中国石油兰州石化公司重催装置原料在不同催化剂上的催化裂解制低碳烯烃的反应性能。结果表明,较适宜的操作条件为:反应温度590℃,剂油质量比为7,与降烯烃催化剂和重油裂解催化剂相比,多产丙烯催化剂的低碳烯烃产率可达25.53%,更适合作为重油催化裂解制低碳烯烃时使用。  相似文献   

16.
甲醇作为催化裂化部分进料的反应过程   总被引:2,自引:2,他引:2       下载免费PDF全文
基于甲醇制低碳烯烃(MTO)与催化裂化(FCC)反应及工艺过程的分析、比较,提出二者结合的可能性,将甲醇作为FCC部分进料用以增产低碳烯烃.根据FCC过程特点,通过实验考察反应温度、甲醇水溶液、积炭催化剂等因素对甲醇转化的影响;验证了甲醇在FCC条件下可具有较高的低碳烯烃产率.实验结果表明:在40%(质量分数)甲醇水溶液进料、未积炭催化剂、反应温度550~600℃的条件下,甲醇转化的烃产率可达26.3%~28.1%(质量分数),低碳烯烃占烃组成的67.8%~66.5%(质量分数).同时对甲醇在FCC条件下的反应特点进行了初步分析.研究结果为进一步实现甲醇作为FCC部分进料提供了重要依据.  相似文献   

17.
增产低碳烯烃、轻质芳烃等产物是催化裂解技术发展的趋势,反应条件是影响催化裂解产物分布的关键因素。介绍催化裂解过程涉及的反应机理,概述反应温度、剂油质量比、停留时间(空速)、水油质量比等反应条件,裂解装置和原料油性质对产物收率的影响,结合工业实例分析反应条件对产物收率的影响。  相似文献   

18.
The effects of reaction temperature, mass ratio of catalyst to oil, space velocity, and mass ratio of water to oil on the product distribution, the yields of light olefins (light olefins including ethylene, propylene and butylene) and the composition of the fluid catalytic cracking (FCC) gasoline upgraded over the self-made catalyst GL in a confined fluidized bed reactor were investigated. The experimental results showed that FCC gasoline was obviously reformulated under appropriate reaction conditions. The olefins (olefins with C atom number above 4) content of FCC gasoline was markedly reduced, and the aromatics content and octane number were increased. The upgraded gasoline met the new standard of gasoline, and meanwhile, higher yields of light olefins were obtained. Furthermore, higher reaction temperature, higher mass ratio of catalyst to oil, higher mass ratio of water to oil, and lower space velocity were found to be beneficial to FCC gasoline reformulation and light olefins production. __________ Translated from Chemical Reaction Engineering and Technology, 2006, 22(6): 532–538 [译自: 化学反应工程与工艺]  相似文献   

19.
A bubbling fluidized bed pyrolyzer was integrated with an in-situ honeycomb as a catalytic upgrading zone for the conversion of biomass to liquid fuels. In the upgrading zone, zeolite coated ceramic honeycomb (ZCCH) catalysts consisting of ZSM-5 (Si/Al=25) were stacked and N2 or recycled non-condensable gas was used as a carrier gas. Ground corncob particles were fast pyrolyzed in the bubbling bed using fine sand particles as a heat carrier and the resulting pyrolysis vapors were passed on-line over the catalytic upgrading zone. The influence of carrier gas, temperature, and weight hourly space velocity (WHSV) of catalyst on the oil product properties, distribution and mass balance were studied. Using ZCCH effectively increased the hydrocarbon yield and the heating value of the dry oil, especially in the presence of the recycled noncondensable gas. Even a low usage of zeolite catalyst at WSHV of 180 h1 was effective in upgrading the pyrolysis oil and other light olefins. The highest hydrocarbon (≥C2) and liquid aromatics yields reached to 14.23 and 4.17 wt-%, respectively. The undesirable products including light oxygenates, furans dramatically decreased in the presence of the ZCCH catalyst.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号