首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 14 毫秒
1.
In holographic display, the reconstructed image suffers from speckle noise severely. In this paper, we propose a method to suppress speckle noise using time multiplexing in phase‐only holographic display. Adjacent pixels of the recorded object are separated into object point groups firstly. Particularly, the pixel interval of each object point group is larger compared with the conventional pixel separation method. And then, sub‐computer–generated holograms (sub‐CGHs) are calculated by the modified Gerchberg–Saxton (GS) algorithm with different initial random phases. Finally, the final integrated image is reconstructed with low speckle noise using time multiplexing technique. Both numerical and optical experimental results are presented to demonstrate the effectiveness and feasibility with our proposed method.  相似文献   

2.
Abstract— A viewing‐angle‐controllable liquid‐crystal display (LCD) is proposed. When the device is only driven by an in‐plane electric field, it exhibits a wide‐viewing‐angle (WVA) mode. And it exhibits narrow‐viewing‐angle (NVA) mode when it is driven by a vertical electric field as well as an in‐plane electric field. In this manner, the viewing angle of the device can be controlled from 100° to 30°. The device exhibits a good viewing‐angle‐controlling characteristic and high transmittance.  相似文献   

3.
Abstract— A flat‐panel display with a slanted subpixel arrangement has been developed for a multi‐view three‐dimensional (3‐D) display. A set of 3M × N subpixels (M × N subpixels for each R, G, and B color) corresponds to one of the cylindrical lenses, which constitutes a lenticular lens, to construct each 3‐D pixel of a multi‐view display that offers M × N views. Subpixels of the same color in each 3‐D pixel have different horizontal positions, and the R, G, and B subpixels are repeated in the horizontal direction. In addition, the ray‐emitting areas of the subpixels within a 3‐D pixel are continuous in the horizontal direction for each color. One of the vertical edges of each subpixel has the same horizontal position as the opposite vertical edge of another subpixel of the same color. Cross‐talk among viewing zones is theoretically zero. This structure is suitable for providing a large number of views. A liquid‐crystal panel having this slanted subpixel arrangement was fabricated to construct a mobile 3‐D display with 16 views and a 3‐D resolution of 256 × 192. A 3‐D pixel is comprised of 12 × 4 subpixels (M = 4 and N = 4). The screen size was 2.57 in.  相似文献   

4.
Abstract— The Multi‐User 3‐D Television Display (MUTED), designed to provide three‐dimensional television (3‐D TV) by the display of autostereoscopic imagery to multiple viewers, each of whom should enjoy freedom of movement, is described. Such an autostereoscopic display system, which allows multiple viewers simultaneously by the use of head tracking, was previously demonstrated for TV applications in the ATTEST project. However, the requirement for a dynamically addressable, steerable backlight presented several problems for the illumination source. The MUTED system demonstrates significant advances in the realization of a multi‐user autostereoscopic display, partly due to the provision of a dynamic backlight employing a novel holographic laser projector. Such a technology provides significant advantages in terms of brightness, efficiency, laser speckle, and the ability to correct for optical aberrations compared to both imaging and scanned‐beam projection technologies.  相似文献   

5.
Abstract— A continuous‐viewing‐angle‐controllable liquid‐crystal display (LCD) using a blue‐phase liquid crystal is proposed. To realize both wide‐viewing‐angle (WVA) mode and narrow‐viewing‐angle (NVA) mode with a single liquid‐crystal panel, each pixel is divided into a main pixel and a subpixel. The main pixel is for displaying images in both modes. The subpixel is for displaying images in WVA mode and controlling the viewing angle in NVA mode. The device exhibits a good viewing‐angle‐controlling characteristic and high transmittance.  相似文献   

6.
Abstract— This work presents a method to increase the viewing angle of holographic polymer‐dispersed liquid‐crystal (H‐PDLC) reflective displays. One of the drawbacks to H‐PDLC technology is the existence of a narrow viewing angle. We present a way to alleviate this problem by structuring the phase front of the recording beams to increase the viewing cone of the display. Analysis of the diffractive properties of these holograms shows that the macroscopic and the nanoscale morphologies both play a role in the optical properties of the films.  相似文献   

7.
Reflective displays are advantageous in applications requiring low power or daylight readability. However, there are no low‐cost reflective technologies capable of displaying bright colors. By employing photoluminescence to more efficiently use ambient light, we created a prototype display that provides bright, full color in a simple, low‐cost architecture. This prototype includes a novel electrokinetic shutter, a layer that incorporates patterned luminescent red, green, and blue sub‐pixel elements, and a novel optical out‐coupling scheme. The luminescent elements convert otherwise‐wasted portions of the incident spectrum to light in the desired color band, resulting in improved color saturation and lightness. This prototype provides a color gamut that is superior to competing reflective display technologies that utilize color filters in single‐layer side‐by‐side sub‐pixel architectures. The current prototype is capable of switching in <0.5 s; future displays based on an alternative electro‐optic shutter technology should achieve video rate operation. A transflective version of this technology has also been prototyped. The transflective version utilizes its backlight with a power efficiency that is at least three times that of a conventional liquid crystal display. These photoluminescence‐based technologies enable a host of applications ranging from low‐power mobile products and retail pricing signage to daylight readable signage for outdoor advertising segments.  相似文献   

8.
Abstract— The current specification of a display's viewing angle as the angle within which the contrast ratio is larger than 10:1 appears not to be predictive for the acceptable viewing‐angle range obtained from perception experiments. In our search towards a perceptually relevant specification for the viewing angle, the physical characteristics of the display that are most related to the viewing‐angle‐dependent image quality were analyzed. This was done for two types of liquid‐crystal displays and one plasma TV. The results indicate that a combination of the luminance and chromaticity coordinates of the higher gray levels predicts the degradation in image quality as a function of viewing angle. As a consequence, a new definition of a display's viewing‐angle range is proposed based on these characteristics.  相似文献   

9.
Abstract— Building a projection‐based virtual reality display is a time‐, cost‐, and resource‐intensive enterprise, and many details contribute to the final display quality. This is especially true for surround‐ screen displays where most of them are one‐of‐a‐kind systems or custom‐made installations with specialized projectors, framing, and projection screens. In general, the costs of acquiring these types of systems have been in the hundreds and even millions of dollars, specifically for those supporting synchronized stereoscopic projection across multiple screens. Furthermore, the maintenance of such systems adds an additional recurrent cost, which makes them hard to afford for general introduction in a wider range of industry, academic, and research communities. A low‐cost easy‐to‐maintain surround‐screen design based on off‐the‐shelf affordable components for the projection screens, framing, and display systems is presented. The resulting system quality is comparableto significantly more expensive commercially available solutions. Additionally, users with average knowledge can implement this design, and it has the added advantage that single components can be individually upgraded based on necessity as well as available funds.  相似文献   

10.
Abstract— Organic thin‐film‐transistor (OTFT) technologies have been developed to achieve a flexible backplane for driving full‐color organic light‐emitting diodes (OLEDs) with a resolution of 80 ppi. The full‐color pixel structure can be attained by using a combination of top‐emission OLEDs and fine‐patterned OTFTs. The fine‐patterned OTFTs are integrated by utilizing an organic semiconductor (OSC) separator, which is an insulating wall structure made of an organic insulator. Organic insulators are actively used for the OTFT integration, as well as for the separator, in order to enhance the mechanical flexibility of the OTFT backplane. By using these technologies, active‐matrix OLED (AMOLED) displays can be driven by the developed OTFT backplane even when they are mechanically flexed.  相似文献   

11.
Abstract— A new bistable‐display driver is presented. The innovation in the developed driver is the addition of a new logical block that calculates the most energy‐efficient driving waveforms. In this paper, the algorithms being applied to the row and column waveforms in order to reduce the power consumption are discussed. Some theoretical as well as experimental results are shown, proving a reduction in the power consumption by about 50%. The proposed algorithms are especially important for battery‐powered applications.  相似文献   

12.
Holographic waveguide display system with high efficiency is presented by embedding an in‐coupling prism and an out‐coupling reflective volume holographic element, which enables a small‐type configuration. The improved coupling scheme can achieve 25% efficiency and the chromatic is corrected properly.  相似文献   

13.
A simple and high image quality method for viewpoint image synthesis from multi‐camera images for a stereoscopic 3D display using head tracking is proposed. In this method, slices of images for depth layers are made using approximate depth information, the slices are linearly blended corresponding to the distance between the viewpoint and cameras at each layer, and the layers are overlaid from the perspective of viewpoint. Because the linear blending automatically compensates for depth error because of the visual effects of depth‐fused 3D (DFD), the resulting image is natural to observer's perception. Smooth motion parallax of wide depth range objects induced by viewpoint movement for left‐and‐right and front‐and‐back directions is achieved using multi‐camera images and approximate depth information. Because the calculation algorithm is very simple, it is suitable for real time 3D display applications.  相似文献   

14.
We propose an integral imaging (II) three‐dimensional (3D) display using a tilted barrier array and a stagger microlens array. The tilted barrier array consists of two orthogonally polarized sheets. In the stagger microlens array, the center of the microlens has p/2 shift with the elemental image along the horizontal direction, where p is the pitch of the microlens. The proposed II 3D display produces two different viewing zones and each of them is almost equal to that of the conventional II 3D display, and it has no crosstalk. We verify the feasibility of the proposed II 3D display in the simulation results.  相似文献   

15.
Abstract— A two‐dimensional array consisting of dye‐doped reflection‐mode holographic‐polymer‐dispersed liquid crystal (H‐PDLC) lasers with alternating pitch lengths is presented. These post structures each reflect at a narrow bandwidth of light. The addition of laser dye to the H‐PDLC system allows for the generation of laser emission at the edge of the reflection band, or photonic band gap. In patterning these H‐PDLC post structures, a narrow‐linewidth patterned emissive color film is realized. The potential of such films and their implication in the display industry is discussed. In creating a three‐color array, an active emissive color film could replace the backlight and color filter components within the display. Such a patterned system would possess a wide color gamut, through spatial color synthesis, formed by narrow‐linewidth lasing structures with well‐defined wavelengths of emission.  相似文献   

16.
An active matrix monolithic micro‐LED full‐color micro‐display with a pixel density of 317 ppi is demonstrated. Starting from large‐scale and low‐cost GaN‐on‐Si epilayers, monolithic 64 × 36 blue micro‐LED arrays are fabricated and further transformed to full‐color micro‐displays by applying a photo‐patternable color conversion layer. This full‐color fabrication scheme shows feasible manufacturability, suggesting a potential for volume production of micro‐LED full‐color micro‐display.  相似文献   

17.
Abstract— Color filters spin‐coated on plastic and glass substrates have been cured by electron‐beam radiation instead of by the conventional thermal‐heating method. The electron‐beam curing of the color filters has many advantages over the thermal curing method. Electron‐beam curing is, in principle, a non‐thermal method where low‐temperature (<100°C) curing of color filters on plastic substrates can be realized for the manufacturing process of flexible display panels. A color‐filter resist having a 1.5‐μm thickness was spin‐coated on plastic (polycarbonate) and glass (corning 1737) substrates. The effect of the electron‐beam radiation conditions, such as electron‐beam energy (0.3–1.0 keV), radiation dosage (10–200 kGy), and ambient oxygen has been characterized. The degree of curing was analyzed by using the characteristic absorption peaks at 808 and 1405 cm?1 in the FT‐IR spectrum. These two peaks originate from the carbon double bonds (>C=C<) of the multi‐functional acrylate monomer which exist in the color‐filter resist. By electron‐beam radiation, the spin‐coated color filter can be effectively polymerized at g (glass transition temperature) of the plastic substrates. The electron beam can solve the problems of the conventional thermal curing method, such as thermal deformation of a plastic substrate and difficulty in achieving dimensional control of a color‐filter pattern due to a large coefficient of thermal expansion (20–70 ppm/°C) compared to that of a glass substrate.  相似文献   

18.
Abstract— Field‐sequential‐color technology eliminates the need for color filters in liquid‐crystal displays (LCDs) and results in significant power savings and higher resolution. But the LCD suffers from color breakup, which degrades image quality and limits practical applications. By controlling the backlight temporally and spatially, a so‐called local‐primary‐desaturation (LPD) backlight scheme was developed and implemented in a 180‐Hz optically compensated bend (OCB) mode LCD equipped with a backlight consisting of a matrix of light‐emitting diodes (LEDs). It restores image quality by suppressing color breakup and saves power because it has no color filter and uses local dimming. A perceptual experiment was implemented for verification, and the results showed that a field‐sequential‐color display with a local‐primary‐desaturation backlight reduced the color breakup from very annoying to not annoying and even invisible.  相似文献   

19.
Abstract— The perceived resolution of matrix displays increases when the relative position of the color subpixels is taken into account. “Subpixel‐rendering” algorithms are being used to convert an input image to subpixel‐corrected display images. This paper deals with the consequences of the subpixel structure and the theoretical background of the resolution gain. We will show that this theory allows a low‐cost implementation in an image scaler. This leads to high flexibility, allowing different subpixel arrangements and a simple control over the trade‐off between perceived resolution and color errors.  相似文献   

20.
Abstract— This paper describes a single‐layered multi‐color electrowetting display (EWD) by using ink‐jet‐printing (IJP) technology and comparing different pattern electrodes with the use of the numerical investigations of ANSYS FLUENT®. This work consists of two parts: the first describes the design of implementing a single‐layered multi‐color EWD and the second demonstrates the application of ANSYS FLUENT® simulation in different pattern electrodes settings on the proposed EWD. The single‐layered multi‐color EW device was evaluated by using various colored oils without adopting a color filter. The single‐layered multi‐color EWD at a driving voltage of 25 V can achieve a maximum aperture ratio and reflectivity of 80% and 38.5%, respectively. The colored saturation of R, G, B oils can increase to 50% (NTSC: 13.3–27.8%). In addition, a radiate electrode at the required viewable area condition of 85% and force 5 * Fk, which results in ink stable contraction and a shorter response time of 50% (radiate vs. square), was proposed. The experimental results and simulation demonstrate that ink‐jet‐printing (IJP) technology along with the use of radiate electrodes can result in a single‐layered multi‐color EWD with a shorter response time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号