首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract— An adjustable‐color‐gamut dual‐gap RGBW transflective liquid‐crystal display that uses a four‐color manufacturing process and a color‐processing algorithm to achieve the appropriate color performance in both the transmissive and reflective modes is presented. Based on superior‐color‐transformation units, the total brightness and color gamut can be modified under different ambience. The highest NTSC color gamut in the reflective mode (reflectance, 4.4%) that has been fabricated successfully for a RGBW 1.5‐in. dual‐gap panel is 23% with a 7%, 17%, and 40% NTSC color gamut in the transmissive mode by using different algorithms. Compared to a typical RGB panel, it not only provides flexibility for any environment but also satisfies a variety of personal requirements. Based on personal preference, users have more choices to adjust the LCD settings such as color saturation, brightness, etc. The smart RGBW TRLCD will definitely become the developing trend towards sunlight‐readable LCDs in the near future.  相似文献   

2.
Abstract— The advantage of RGB color‐sequential displays is that they have no color filters, but the disadvantage is that they need to run at high refresh rates (> >180 Hz) to prevent flicker and color breakup. An alternative color‐sequential display, which can operate at relatively low refresh rates (~ 100 Hz) without disturbing color breakup or flicker, has been developed. The display has two color filters per pixel (cyan and magenta) on the LCD panel and the backlight can generate two types of spectra (blue‐green and green‐red), which results in a wide gamut four‐primary display, effectively. One part of the paper describes the color reproduction, including color‐filter design, gamut mapping, and multi‐primary conversion. The other part deals with the reduced perception of color breakup on the novel spectrum‐sequential display compared to conventional color‐sequential displays.  相似文献   

3.
Abstract— A novel approach of synthesizing display color by hybrid color processing in both the spatial and temporal domains is introduced. The rational basis for this approach is found in vision science, and more particularly in the spatial and temporal characteristics of the human visual system. Various examples of the new approach, aiming at different display‐performance objectives, are described. Hybrid spatial‐temporal color synthesis can be used to generate a three‐primary RGB display, the analysis of which reveals a higher spatial resolution and a lower fixed‐pattern noise. The concept has also been used to build, based on a conventional LCD panel in combination with an adapted backlight system, a six‐primary LCD TV with a 22% wider color gamut. Finally, the approach is demonstrated in a four‐primary mobile LCD and results in lower cost combined with a higher display luminance and a wider color gamut.  相似文献   

4.
Abstract— A method for selecting primaries of a wide‐gamut display is proposed, in which display color gamut is designed to match a target color gamut in CIELAB color space. A standard deviation of the relative maximum chroma of display and target color gamuts is defined. The selection method optimizes display primaries for the minimum standard deviation so that display and target color gamuts are similar in shape. It is shown that the color gamut of a laser display designed by this method is similar in shape to the theoretical maximum, or optimal, color gamut of objects. It is also shown that the color gamut of an LED display can be designed to include 99.7% of the gamut of Pointer's real‐world surface colors. LED primaries are selected to minimize the standard deviation of the relative maximum chroma of effective display color gamut and a target color gamut which is defined to include Pointer's real‐world surface colors. For both the laser and LED displays, it is necessary to constrain the red‐primary wavelength to avoid excessive optical power for the red primary.  相似文献   

5.
Abstract— The perceived colors of an image seen on a self‐luminous display are affected by ambient illumination. The ambient light reflected from the display faceplate is mixed with the image‐forming light emitted by the display. In addition to this direct physical effect of viewing flare, ambient illumination causes perceptual changes by affecting the adaptation state of the viewer's visual system. This paper first discusses these effects and how they can be compensated, outlining a display system able to adjust its output based on prevailing lighting conditions. The emphasis is on compensating for the perceptual effects of viewing conditions by means of color‐appearance modeling. The effects of varying the degree of chromatic adaptation parameter D and the surround compensation parameters c and Nc of the CIECAM97s color‐appearance model were studied in psychophysical experiments. In these memory‐based paired comparison experiments, the observers judged the appearance of images shown on an LCD under three different ambient‐illumination conditions. The dependence of the optimal parameter values on the level of ambient illumination was evident. The results of the final experiment, using a category scaling technique, showed the benefit of using the color‐appearance model with the optimized parameters in compensating for the perceptual changes caused by varying ambient illumination.  相似文献   

6.
Abstract— A 53° twisted-nematic cell for a color reflective liquid-crystal display was developed. It has a mirror electrode inside the panel on the TFT substrate, a twisted-nematic alignment structure, an RGB color filter, a single polarizer, and a light-control film covering the panel. Its advantages include gray-scale capability, low driving voltage, and a wide viewing angle. We discuss the Δn?d, the twist angle, and the front-light control film.  相似文献   

7.
Abstract— A full‐color eyewear display with over 85% see‐through transmittance with a 16° horizontal field of view was developed. Very low color crosstalk, less than 0.008 Δuv′ uniformity, and 120% NTSC color gamut were achieved. Waveguides with two in‐ and out‐coupling reflection volume hologram elements enabled a simple configuration that has an optical engine beside the user's temples. The reflection volume hologram elements used on the waveguides realized a small thickness of 1.4 mm for each waveguide, and an out‐coupling reflection volume hologram used as an optical combiner contributed a high see‐through transmittance of 85% due to its wavelength selectivity. However, there are technical challenges in achieving a reasonable screen size and quality color images with optics that utilize holographic waveguides because holograms have large chromatic dispersions compared to conventional optical elements such as lenses and mirrors. Approaches to overcome these issues are described.  相似文献   

8.
Abstract— A high‐luminance 1.8‐mm‐pixel‐pitch CNT‐FED for color character displays has been developed. The display panel has 32 × 256 color pixels, and the subpixel size is 0.6 × 1.8 mm. The display panel can provide good visibility when installed even in outdoor locations. The power consumption is low enough for the display to be battery driven. The practical application is the display of important messages regarding the evacuation from disaster areas, even under emergent no‐power conditions similar to the messages on vending machines.  相似文献   

9.
Abstract— In this paper, the resolution characteristics of multi‐primary‐color (MPC) display systems are analyzed. That four‐primary‐color (4PC) displays can increase the effective resolution for achromatic images in the luminance domain by a factor of two as compared to conventional RGB‐based displays with MPC‐specialized subpixel rendering, which is proposed in this paper, is demonstrated. Five‐ and six‐primary‐color (5PC and 6PC) display systems can reproduce denser luminance data than conventional RGB‐based display systems and solve a problem of MPC displays, viz. an increase of production costs and a decrease in the aperture ratio caused by increasing the number of subpixels in one pixel. This is an essential advantage of MPC display systems, which is related to the combination of the proposed color‐filter architecture and image processing. Thus, a completely new advantage of MPC display systems, in addition to their well‐known capabilities of color reproduction and power saving, is proposed.  相似文献   

10.
Abstract— A flat‐panel display with a slanted subpixel arrangement has been developed for a multi‐view three‐dimensional (3‐D) display. A set of 3M × N subpixels (M × N subpixels for each R, G, and B color) corresponds to one of the cylindrical lenses, which constitutes a lenticular lens, to construct each 3‐D pixel of a multi‐view display that offers M × N views. Subpixels of the same color in each 3‐D pixel have different horizontal positions, and the R, G, and B subpixels are repeated in the horizontal direction. In addition, the ray‐emitting areas of the subpixels within a 3‐D pixel are continuous in the horizontal direction for each color. One of the vertical edges of each subpixel has the same horizontal position as the opposite vertical edge of another subpixel of the same color. Cross‐talk among viewing zones is theoretically zero. This structure is suitable for providing a large number of views. A liquid‐crystal panel having this slanted subpixel arrangement was fabricated to construct a mobile 3‐D display with 16 views and a 3‐D resolution of 256 × 192. A 3‐D pixel is comprised of 12 × 4 subpixels (M = 4 and N = 4). The screen size was 2.57 in.  相似文献   

11.
Abstract— A 3.0‐in. 308‐ppi WVGA top‐emission AMOLED display with a white OLED and color filters, driven by LTPS TFTs demonstrating a color gamut of >90% and a Δ(u′,v′) of <0.02 is reported. A white‐emission source with a unique device structure was developed using all fluorescent materials and yielded efficiencies of 8.45% and 16 cd/A at 4000 nits with CIE color coordinates of (0.30, 0.32).  相似文献   

12.
In this article, we disclose a 3‐inch 250ppi active matrix field sequential color (FSC) display based on electrically suppressed ferroelectric liquid crystal (ESHFLC). ESHFLC's ultra‐fast response time (~10 μs at 6.67 V/μm) enables the display resolution to be tripled via FSC technique. The photo‐alignment technology provides ESHFLC with optimal anchoring energy that contributes to a high contrast ratio over 10 K:1 on single pixel level measurement. A specific 3T1C pixel circuit is designed to generate continuous gray scale from FLC binary switching by utilizing the pulse width modulation concept. The low temperature poly silicon thin‐film transistor array has been used to fabricate the FSC ESHFLC display panel. We achieved an 8‐bit gray level for each color subframe, that is, R, G, and B colors that results in 24‐bit color images. We believe, because of the good optical quality and cost‐effective fabrication, this display may replace in‐plane switching or fringe‐field switching in the near future for the portable device market. Moreover, high resolution FSC ESHFLCs can find applications in the emerging virtual reality displays.  相似文献   

13.
Abstract— A new method for achieving full‐color capability for inorganic EL displays was developed, which combines electroluminescence with photoluminescence phenomena in the same device structure. In this display panel, the blue emission was obtained from the EL device by using the Eu‐doped barium thioaluminate phosphor material system, which was then used to generate green and red emission by the use of down‐conversion materials. The major advantages of the Color‐by‐Blue method (CBB) are the elimination of color‐balance control issues associated with the use of different electroluminescent phosphor materials for red, green, and blue with potentially different threshold voltages for the onset of luminance and the achievement of a low‐cost high‐yield manufacturing process.  相似文献   

14.
Abstract— The development of multi‐primary‐color (MPC) display systems is one of the big paradigm shifts in recent display technologies and induces new potentials of display devices. The development of MPC display systems for different goals is briefly reviewed. Especially, by employing MPC systems, it is possible to reproduce the real material colors faithfully and efficiently. For signal processing, MPC systems have a big advantage in the so‐called color‐reproduction redundancy. A number of applications can be derived from this characteristic, such as improving the viewing‐angle dependency issue and power savings. On the other hand, MPC systems have a typical trade‐off versus RGB‐standardized input signals, especially for reproducing bright green. New algorithms to moderate this trade‐off on MPC systems by employing color‐reproduction redundancy are proposed. The goal of our algorithms is to maintain the compatibility with RGB‐based input signals though the initial display design so that the characteristics of MPC systems are not changed or lost. These algorithms indicate that MPC display systems are applicable not only for a specifically limited objective but also for other applications, e.g., TV broadcasting.  相似文献   

15.
Abstract— Color‐gamut design is a major concern in wide‐gamut displays. To determine a preferred gamut for displaying object color in natural scenes on a wide‐gamut display, subjective evaluations were conducted to investigate the preferred color and acceptable limit. Then, simple synthesized images were used to determine the mode boundary between surface color and fluorescent color appearance. It was found that (1) observers perceived the colors with high saturation and high lightness as fluorescent colors and (2) the fluorescent appearance decreased preference. The color‐mode index (CMI) was defined as an evaluation index of the color‐appearance mode so that the boundary between surface color and fluorescent color appearance was defined as CMI 100. Additionally, it was found that the CMI 100 loci could be interpreted as an optimal color loci. Then, it was clarified that the mode boundary and the preferred gamut were closely related and that the acceptable limit for L* was 1.1 times L* for CMI 100.  相似文献   

16.
Abstract— High‐efficiency plasma‐display‐panel micro‐discharge characteristics will be discussed. An increase in the discharge efficiency for a higher‐Xe‐content gas mixture is well known. In this article, the interdependency of the capacitive design, the sustain voltage, and the Xe content will be discussed. A high panel efficacy was obtained, especially for the design and driving conditions that govern the development of a fast discharge. A fast discharge was observed for a higher discharge field at sustain voltages higher than 200 V. A +C‐buffer design, where the extra capacitance acts as a local on the panel power source that lowers the voltage decrease inherent to the discharge of the discharge capacitance upon firing, and efficient priming of the discharge at higher sustain frequency, also stimulates a fast‐discharge development. Apparently, a “high‐efficiency fast‐discharge mode” exists. It is proposed that in this mode the cathode sheath is not, or incompletely, formed during the increase in the discharge current, and the electric field in the discharge cell is dominated not by the space charges but by the externally applied voltage. The effective discharge field is lowered, resulting in a lower effective electron temperature and more efficient Xe excitation. Also, under a fast discharge build‐up condition, the electron‐heating efficiency increases, due to a decrease in the ion heating losses in the cathode sheath. In a 4‐in. color plasma‐display test panel, operating in a high‐efficiency discharge mode and containing a 50%Xe in Ne gas mixture, a panel efficacy of 5 lm/W concurrent with a luminance of 5000 cd/m2 was realized. This result was obtained at a sustain voltage of 260 V. These data compare favorably with alternative high‐efficacy panel design approaches.  相似文献   

17.
Abstract— A flexible‐printed‐cable (FPC) free liquid‐crystal‐display (LCD) panel by using a capacitive‐coupling technique has been developed. A QQVGAeight‐color image was successfully displayed for the first time without attaching any signal or power cables to the panel. The receiving circuitry and capacitive‐coupling electrodes were integrated on the LCD panel using a low‐temperature polysilicon (LTPS) fabrication process. In the proposed digital coding method, the receiving circuit converts derivative waveform signals via the capacitive coupling to conventional logic‐level signals. The maximum data rate of 2.4‐Mbps × 3ch (RGB) was achieved. In addition, LTPS low‐capacitance diode bridge and regulator enabled us to obtain stable DC power of 2.4 mW on the panel from the AC‐power signal. This study is the first step towards integrating the wireless‐communication function on the display panel to achieve a high‐value‐added flat‐panel display (FPD).  相似文献   

18.
We present a liquid‐crystal display (LCD) backlight made of nanoplatelets (NPLs) for the first time. Owing to the narrow emission linewidth of NPLs (8‐12 nm) and quantum dots (QDs), the spectrum exhibits a wide color gamut display with a 139.9% color gamut of National Television System Committee (NTSC) 1953 standard and 104.5% Rec.2020 (ITU‐R Recommendation BT.2020), realizing a truly ultrawide color gamut LCD display.  相似文献   

19.
Abstract— Thin‐film‐transistor liquid‐crystal displays (TFT‐LCDs) have the largest market share of all digital flat‐panel displays. An LCD backlighting system employing a three‐color red‐green‐blue light‐emitting diode (RGB‐LED) array is very attractive, considering its wide color gamut, tunable white point, high dimming ratio, long lifetime, and environmental compatibility. But the high‐intensity LED has problems with thermal stability and degradation of brightness over time. Color and white luminance levels are not stable over a wide range of temperature due to inherent long‐term aging characteristics. In order to minimize color point and brightness differences over time, optical feedback control is the key technology for any LED‐backlight system. In this paper, the feasibility of an optical color‐sensing feedback system for an LED backlight by integrating the amorphous‐silicon (a‐Si) color sensor onto the LCD panel will be presented. To minimize the photoconductivity degradation of a‐Si, a new laser exposure treatment has been applied. The integrated color‐sensor optical‐feedback‐controlled LED‐backlight system minimized the color variation to less than 0.008 Δu'v' (CIE1976) compared to 0.025 for an open‐loop system over the temperature range of 42–76°C.  相似文献   

20.
We report a new technique for the design of field‐sequential‐color liquid‐crystal displays (FS‐LCDs), which maximizes the liquid‐crystal response,tLC, by dividing the display area into as few sub‐areas,N, as possible. We obtained the following results: (1) tLC increased as N increased, although saturation tended to occur. Increasing N from 1 to 2 gave the largest increase in tLC. (2) tLC was maximized by dividing the display area unequally.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号