首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到7条相似文献,搜索用时 0 毫秒
1.
BACKGROUND: Lactating dairy cattle in the tropics may require more sodium (Na) owing to the hot and humid climatic conditions. It is unknown whether the current recommendations on Na for lactating cows can be quantitatively used in tropical countries. This study attempted to define the Na requirement of lactating dairy cows under tropical conditions by measuring Na levels in saliva, milk and faeces. RESULTS: The concentrations of Na and potassium (K) in milk, faeces and serum were not affected by dietary treatments. The amount of Na absorbed by cows fed the basal (low‐Na) diet containing 0.4 g Na kg?1 dry matter (DM) was equal to the amount of Na lost in the milk, showing that these animals were fed an Na‐deficient ration. This observation was corroborated by salivary Na and K levels, with the cows on the low‐Na diet having salivary Na concentrations below 120 mmol L?1 in combination with salivary K concentrations above 20 mmol L?1 (P < 0.05). CONCLUSION: Consumption of a daily ration formulated to contain the current Na requirement set by the NRC appears to provide too much Na for lactating cows under tropical conditions. A tentative value of 1.2 g kg?1 DM is proposed as the Na requirement for dairy cows under tropical conditions. Copyright © 2011 Society of Chemical Industry  相似文献   

2.
This study compared high protein dried distillers grains (HPDDG) with soybean meal (SBM), canola meal (CM), and dried distillers grains with solubles (DDGS) as protein supplements in dairy diets. A lactation trial used 12 multiparous cows averaging 78 d in milk at the start of the experiment in a 4 × 4 Latin square design with 28-d periods. Weeks 1 and 2 of each period were used for adjustment and wk 3 and 4 for data collection. Each treatment diet consisted of 55% forage and one of the 4 protein supplements in a concentrate mix. Total mixed diets averaged 15.3% crude protein, with 38% of the protein from one of the 4 protein supplements. Dry matter intake (24.4 kg/d) and crude protein intake (3.57 kg/d) were similar for all 4 diets. Milk production (31.8 kg/d), protein yield (1.05 kg/d), fat yield (1.29 kg/d), and protein percentage (3.31) were similar for all 4 treatment diets. Milk fat percentage was lower when fed DDGS (3.78) than when fed SBM or HPDDG (4.21), but similar with CM (4.07). Feed efficiency (1.44 kg of energy-corrected milk/kg of dry matter intake) and nitrogen efficiency (0.29) were not affected by diet. Total milk nitrogen and true milk protein were highest when fed the HPDDG diet. Molar proportions of acetate, propionate, and the acetate to propionate ratio in ruminal contents and ruminal ammonia concentrations were similar for all diets. Arterial and venous concentrations of total essential AA tended to be lower when fed CM, reflecting lower concentrations of His, Ile, Leu, and Val when fed the CM diet. Extraction efficiency of AA from blood by the mammary gland indicated that Met was the first limiting AA when fed the SBM diet, whereas Lys was first limiting for the other diets. Phenylalanine was third limiting with all diets. Feeding HPDDG was equally as effective as feeding SBM, CM, and regular distillers grains as a protein supplement for lactating cows.  相似文献   

3.
This study compared vaginal temperature, physiologic, and productive parameters in lactating dairy cows supplemented or not with Omnigen-AF (Phibro Animal Health, Teaneck, NJ) during the summer months in a tropical environment. Thirty-two lactating, primiparous (n = 16) and multiparous (n = 16) pregnant Holstein × Gir cows were ranked by parity, days in milk, body weight, and body condition score (BCS), and assigned to receive (SUPP; n = 16) or not (CON; n = 16) Omnigen-AF (Phibro Animal Health, Teaneck, NJ) at 56 g/cow daily (as-fed basis). During the experimental period (d ?6 to 56), cows were maintained in a single drylot pen with ad libitum access to water and a total mixed ration, and milked twice daily. Cows received Omnigen-AF mixed with 200 g of corn (as-fed basis) after the daily morning milking through self-locking head gates, whereas CON cows concurrently received 56 g of kaolin mixed with 200 g of corn. For feed intake evaluation, cows from both treatments were randomly divided in 4 groups of 8 cows each, and allocated to 8 individual feeding stations for 3 d. Intake was evaluated 4 times per group from d 1 to 56. From d ?6 to 0, d 15 to 28, and d 43 to 56, cow vaginal temperature was recorded hourly. Environmental temperature-humidity index (THI) was also recorded hourly from d 15 to 28 and d 43 to 56. Cows were evaluated for body weight and BCS on d ?6 and 56, individual milk production was recorded daily from d ?6 to 56, and milk samples were collected on d ?6, 0, 7, 14, 21, 28, 35, 42, 49, and 56 for analyses of somatic cell count and milk components. Blood samples were collected on d ?6, ?3, 0, 9, 15, 18, 21, 24, 27, 36, 45, 48, 51, 54, and 56. Results from samples or observations collected from d ?6 to 0 were included as an independent covariate in each respective analysis. Environmental THI was 74.2 ± 0.5 and cows were exposed to THI >68 for 633 h within a total of 672 h of evaluation. Cows assigned to CON had greater vaginal temperature on d 28, 43, 45, and from d 48 to 55 (by 0.38 to 0.52%), as well as greater mean somatic cell count (by 97%) and serum haptoglobin concentrations (by 89%) compared with SUPP cows. Cows assigned to SUPP had greater mean dry matter intake (by 7%), BCS on d 56 (by 11%), and mean serum insulin concentrations (by 35%) compared with CON cows. Hence, SUPP ameliorated hyperthermia, improved nutritional status, and modulated systemic and mammary gland immune parameters in lactating dairy cows exposed to heat stress conditions.  相似文献   

4.
Forty-two lactating Holstein cows 188 ± 59 d in milk were used in an 8-wk randomized complete block trial with a 2 × 3 factorial arrangement of treatments. The objective was to determine the effects of high dietary cation-anion difference (DCAD) and K:Na ratio on milk yield and composition and blood acid-base chemistry. Treatments included DCAD concentrations of 45 or 60 mEq (Na + K −Cl)/100 g of feed dry matter and K:Na ratios of 2:1, 3:1, or 4:1. Mean DCAD values were later determined to be 41 and 58. Dry matter intake was similar across treatments. Yield of milk and energy corrected milk were lower for the 3:1 K:Na ratio compared with 2:1 and 4:1 ratios. Blood urea N was lower for the highest DCAD, suggesting that DCAD possibly reduced protein degradation or altered protein metabolism and retention. Mean temperature-humidity index was 75.6 for the duration of the trial, exceeding the critical value of 72 for all weeks during the treatment period. Cows maintained relatively normal body temperature with mean a.m. and p.m. body temperature of 38.5 and 38.7°C, respectively. These body temperatures suggest that cows were not subject to extreme heat stress due to good environmental control. Results of this trial indicate that the greatest effect on milk yield occurs when either Na or K is primarily used to increase DCAD, with the lowest yield of energy-corrected milk at a 3:1 K:Na ratio (27.1 kg/d) compared with ratios of 2:1 (29.3 kg/d) and 4:1 (28.7 kg/d). Results also suggest that greater DCAD improves ruminal N metabolism or N utilization may be more efficient with a high DCAD.  相似文献   

5.
The objective of this study was to determine the effect of altering the dietary ratio of Na:K while keeping the dietary cation-anion difference (DCAD) constant, on dry matter (DM) intake, milk production, and mineral metabolism in lactating dairy cows. Fifteen mid-lactation Holstein cows averaging 160 d in milk were used in a replicated 3 × 3 Latin square design with treatments varying in the molar ratio of Na:K (0.21, 0.53, and 1.06). Diets contained A) 0.25% Na and 2.00% K, B) 0.50% Na and 1.60% K, or C) 0.75% Na and 1.20% K (on a DM basis), and all contained the same DCAD of 33 mEq (Na + K - Cl - S)/100 g of DM. There was a quadratic effect of the ratio of Na:K on DM intake (28.4, 27.5, and 28.3 kg/d for diets A, B, and C, respectively). The ratio of Na:K did not affect milk yield (average 39.2 kg/d), milk composition (average 3.60% fat; 3.01% protein; and 8.62% solids-not-fat), or coccygeal venous plasma concentrations of HCO3 (average 29.3 mEq/L), Na+ (average 136.7 mEq/L), K+ (average 4.53 mEq/L), Cl (average 97.5 mEq/L), Ca (average 10.06 mg/dL), and Mg (average 2.49 mg/dL), and urinary pH (average 8.38) and ratio of Cl:creatinine (average 4.35). The ratios of urinary Na+:creatinine (1.80, 4.21, and 7.42), Ca:creatinine (0.035, 0.041, and 0.064), and Mg:creatinine (0.53, 0.60, and 0.77) increased linearly with increasing ratios of Na:K, whereas the ratio of urinary K+:creatinine decreased linearly as the ratio of Na:K increased (22.4, 15.9, and 10.3). Milk production and composition of mid-lactation cows was similar among dietary ratios of Na:K with the same DCAD of 33 mEq/100 g of DM.  相似文献   

6.
A meta-analysis was conducted to develop a model for predicting dry matter intake (DMI) in dairy cows under the tropical conditions of Brazil and to assess its adequacy compared with 5 currently available DMI prediction models: Agricultural and Food Research Council (AFRC); National Research Council (NRC); Cornell Net Carbohydrate and Protein System (CNCPS; version 6); and 2 other Brazilian models. The data set was created using 457 observations (n = 1,655 cows) from 100 studies, and it was randomly divided into 2 subsets for statistical analysis. The first subset was used to develop a DMI prediction equation (60 studies; 309 treatment means) and the second subset was used to assess the adequacy of DMI predictive models (40 studies; 148 treatment means). The DMI prediction model proposed in the current study was developed using a nonlinear mixed model analysis after reparameterizing the NRC equation but including study as a random effect in the model. Body weight (mean = 540 ± 57.6 kg), 4% fat-corrected milk (mean = 21.3 ± 7.7 kg/d), and days in milk (mean = 110 ± 62 d) were used as independent variables in the model. The adequacy of the DMI prediction models was evaluated based on coefficient of determination, mean square prediction error (MSPE), root MSPE (RMSPE), and concordance correlation coefficient (CCC). The observed DMI obtained from the data set used to evaluate the prediction models averaged 17.6 ± 3.2 kg/d. The following model was proposed: DMI (kg/d) = [0.4762 (±0.0358) × 4% fat-corrected milk + 0.07219 (±0.00605) × body weight0.75] × (1 – e−0.03202 (±0.00615) × [days in milk + 24.9576 (±5.909)]). This model explained 93.0% of the variation in DMI, predicting it with the lowest mean bias (0.11 kg/d) and RMSPE (4.9% of the observed DMI) and the highest precision [correlation coefficient estimate (ρ) = 0.97] and accuracy [bias correction factor (Cb) = 0.99]. The NRC model prediction equation explained 92.0% of the variation in DMI and had the second lowest mean bias (0.42 kg/d) and RMSPE (5.8% of the observed DMI), as well as the second highest precision (ρ = 0.94) and accuracy (Cb = 0.98). The CNCPS and AFRC DMI prediction models explained 93.0 and 85.0% of the variation in DMI but underpredicted DMI by 1.8 and 1.4 kg/d, respectively. These 2 models (CNCPS and AFRC) resulted, respectively, in RMSPE of 11.3 and 10.7% of the observed DMI, with moderate to high precision (ρ = 0.81 and 0.82) and accuracy (Cb = 0.84 and 0.89). The remaining 2 models resulted in the poorest results, underpredicting DMI by 2.3 and 1.9 kg/d, with RMSPE of 22.8 and 14.9% of the observed DMI and moderate to low precision (ρ = 0.49 and 0.76) and accuracy (Cb = 0.81 and 0.86). The new model derived from the current meta-analytical approach provided the best accuracy and precision for predicting DMI in lactating dairy cows under Brazilian conditions.  相似文献   

7.
The objective of this study was to compare the DVE/OEB system (DVE = truly absorbed protein in the small intestine; OEB = degraded protein balance) and the NRC-2001 model in the prediction of supply of protein to dairy cows from selected forages: alfalfa (Medicago sativa L. cv. Pioneer and Beaver) and timothy (Phleum pratense L. cv. Climax and Joliette). Comparisons were made in terms of 1) ruminally synthesized microbial CP, 2) truly absorbed protein in the small intestine, and 3) degraded protein balance. In addition, the effects of variety and cutting stage of the selected forages on the potential nutrient supply to dairy cows were also studied. The results showed that the predicted values from the DVE/OEB system and the NRC-2001 model had significant correlations with high R (>0.96) values. However, using the DVE/OEB system, the overall average microbial protein supply based on available energy was 12% higher, and the truly absorbed protein in the small intestine was 15% lower than that predicted by the NRC-2001 model. The difference was also found in the prediction of the degraded protein balances, which was 11% higher based on data from the NRC-2001 model. These differences are due to considerably different factors used in calculations in the two models, although both are based on similar principles. This indicates that a further refinement is needed for a modern protein evaluation and prediction system. In addition, this study showed that the two alfalfa varieties studied (Pioneer vs. Beaver) had no effect, but cutting stage had a profound influence on ruminally synthesized microbial CP (93, 96, 86 g/kg DM at stage of early bud, late bud, and early bloom, respectively) and truly absorbed intestinal protein predicted by the DVE/OEB system (80, 79, 67 g/kg DM at stage of early bud, late bud, and early bloom, respectively). With timothy, both variety (Climax vs. Joliette) and cutting stage had significant impacts on the potential protein supply predicted by both models. The potential protein supply (DVE or MP) to the dairy cow from Climax timothy was higher than that from Joliette timothy (DVE: 46 vs. 32 g/kg DM; MP: 61 vs. 38 g/kg DM). With increasing stage of cutting, the potential protein supply (DVE or MP) was reduced (DVE: 53, 39, 25 g/kg DM; MP: 62, 51, 36 g/kg DM at stage of joint, prebloom head, and full head, respectively).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号