首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 581 毫秒
1.
The systematic computations of the short-circuit current density have been performed for Si and ZnO/CdTe core shell nanowire arrays of 1 μm height in order to optimize the structural morphology in terms of nanowire diameter and period. It is found that the best structural configuration for Si leading to the ideal short-circuit current density of 19.6 mA/cm2 is achieved for a nanowire diameter and period of 315 nm and 350 nm, respectively. In case of ZnO/CdTe, the ideal short circuit current density is of 24.0 mA/cm2, the nanowire diameter and period is of 210 nm and 350 nm, respectively. It is shown that the optimal configuration is more compact in the case of Si nanowire arrays than in the case of ZnO/CdTe nanowire arrays. Since Si has a smaller absorption coefficient than CdTe, a larger amount of material is needed and thus more compact nanowire arrays are required. It is also revealed that core–shell nanowire arrays made of ZnO/CdTe more efficiently absorb light than that of Si, making this device a good candidate for the next generation of nanostructured solar cells.  相似文献   

2.
Nanowires are arguably the most studied nanomaterial model to make functional devices and arrays. Although there is remarkable maturity in the chemical synthesis of complex nanowire structures, their integration and interfacing to macro systems with high yields and repeatability still require elaborate aligning, positioning and interfacing and post-synthesis techniques. Top-down fabrication methods for nanowire production, such as lithography and electrospinning, have not enjoyed comparable growth. Here we report a new thermal size-reduction process to produce well-ordered, globally oriented, indefinitely long nanowire and nanotube arrays with different materials. The new technique involves iterative co-drawing of hermetically sealed multimaterials in compatible polymer matrices similar to fibre drawing. Globally oriented, endlessly parallel, axially and radially uniform semiconducting and piezoelectric nanowire and nanotube arrays hundreds of metres long, with nanowire diameters less than 15 nm, are obtained. The resulting nanostructures are sealed inside a flexible substrate, facilitating the handling of and electrical contacting to the nanowires. Inexpensive, high-throughput, multimaterial nanowire arrays pave the way for applications including nanowire-based large-area flexible sensor platforms, phase-changememory, nanostructure-enhanced photovoltaics, semiconductor nanophotonics, dielectric metamaterials,linear and nonlinear photonics and nanowire-enabled high-performance composites.  相似文献   

3.
The optical properties of organic semiconductor thin films deposited on nanostructured surfaces are investigated using time-resolved two-photon photoluminescence (PL) microscopy. The surfaces consist of parallel aligned metallic or dielectric nanowires forming well-defined arrays on glass substrates. Keeping the nanowire dimensions constant and varying only their spacing from 40 to 400 nm, we study the range of different types of nanowire-semiconductor interactions. For silver nanowires and spacings below 100 nm, the PL intensity and lifetime of P3HT and MDMO-PPV decrease rapidly due to the short-ranged metal-induced quenching that dominates the PL response with respect to a possible plasmonic enhancement of optical transition rates. In the case of P3HT however, we observe an additional longer-ranged reduction of non-radiative losses for both metallic and dielectric nanowires that is not observed for MDMO-PPV. Excitation polarization dependent measurements indicate that this reduction is due to self-assembly of the P3HT polymer chains along the nanowires. In conclusion, nanostructured surfaces, when fabricated across large areas, could be used to control film morphologies and to improve energy transport and collection efficiencies in P3HT-based solar cells.  相似文献   

4.
Cu nanowire arrays were synthesized via a porous alumina membrane (PAM) template with a high aspect ratio, uniform pore size (120–140 nm), and ordered pore arrangement. The Cu2O nanowire arrays were prepared from the oxidization of Cu metal nanowire arrays. The electrochemical deposition potential of Cu metal nanowires (?180 mV vs. SCE) was determined from X-ray diffraction (XRD) patterns. The microstructure and chemical composition of Cu nanowire arrays were characterized using field emission scanning electron microscopy (FE-SEM), high resolution transmission electron microscopy (HR-TEM), and X-ray diffraction (XRD). Results indicate that the Cu/Cu2O nanowire arrays assembled into the nanochannel of the porous alumina template with diameters of 120–140 nm. The valence of copper was controlled by the porous alumina template during the annealing process. Copper nanowires transformed to the Cu2O phase with the space limitation of the PAM template. Single-crystal Cu2O nanowire arrays were also obtained under the template embedded.  相似文献   

5.
The areal capacity of nanowire-based microbatteries can be potentially increased by increasing the length of nanowires. However, agglomeration of high aspect ratio nanowire arrays could greatly degrade the performance of nanowires for lithium ion (Li-ion) battery applications. In this work, a three-dimensional (3-D) Ni/TiO(2) nanowire network was successfully fabricated using a 3-D porous anodic alumina (PAA) template-assisted electrodeposition of Ni followed by TiO(2) coating using atomic layer deposition. Compared to the straight Ni/TiO(2) nanowire arrays fabricated using conventional PAA templates, the 3-D Ni/TiO(2) nanowire network shows higher areal discharging capacity. The areal capacity increases proportionally with the length of nanowires. With a stable Ni/TiO(2) nanowire network structure, 100% capacity is retained after 600 cycles. This work paves the way to build reliable 3-D nanostructured electrodes for high areal capacity microbatteries.  相似文献   

6.
With ultrafine SiC powder as starting material, thermal plasma physical vapor deposition has been applied successfully to the deposition of SiC films on Si substrates. The control of processing parameters such as substrate temperature, powder feeding rate and composition of plasma gases, permits the deposition of SiCfilms on a wide area of around 400 cm2 with a variety of microstructures fromamorphous to nanostructured and with various morphologies from dense to columnar. For the nanostructured case, the crystallite size was between 3 and 15 nm and the maximum deposition rate calculated based on the actual deposition duty time reached 200 nm/s. The deposition mechanism is discussed briefly.  相似文献   

7.
High-density aligned arrays made of one-dimensional (1D) silicon nanostructures, including nanocone, nanorod, and nanowire, are fabricated by plasma etching in a hot-filament chemical vapor deposition apparatus using the gas mixture of hydrogen, nitrogen and methane. The silicon nanocones are crystalline structure and have a uniform apex angle of about 22°. The cones can be coated in situ with an about 3 nm thick amorphous carbon film by increasing the methane concentration in source gases. With gradually decreasing the plasma intensity, the morphologies of the silicon nanostructures evolve along the nanocone–nanorod–nanowire route, and the nanowire becomes amorphous structure. The model for fabrication process of silicon nanostructures with different morphologies will also be suggested.  相似文献   

8.
Photoelectrode materials are the heart of photoelectrochemical (PEC) cells, which hold great promise to address global energy and environmental issues by converting solar energy into electricity or chemical fuels. In recent decades, significant research efforts have been devoted to the design and construction of photoelectrodes for the efficient generation and utilization of charge carriers to boost PEC performance. Herein, insights from a literature study on the relationship between the architecture and charge dynamics of photoelectrodes are presented. After briefly introducing the fundamental theories of charge dynamics in nanostructured photoelectrodes, the development of photoelectrode design in 1D polycrystalline nanotube arrays, 1D single‐crystalline nanowire arrays, and hierarchical and mesoporous nanowire arrays is reviewed with a focus on the interplay between architecture and charge transport properties. For each design, commonly used synthetic approaches and the corresponding charge transport properties are discussed. Subsequently, the applications of these photoelectrodes in PEC systems are summarized. In conclusion, future challenges in the rational design of photoelectrode architecture are presented. The basic relationships between the architectures and charge dynamics of photoelectrode materials discussed here are expected to provide pertinent guidance and a reference for future advanced material design targeting improved light energy conversion systems.  相似文献   

9.
GdB44Si2 is an excellent thermoelectric material, and nanostructured GdB44Si2 makes it possible to potentially improve its properties further. GdB44Si2 nanowires and nanobelts have been fabricated by chemical vapor deposition and characterized by electron diffraction and high-resolution electron microscopy. These nanostructures are of the YB50 structure and grew in the [010] direction. The nanowires have thickness of less than 100 nm and length of several tens of microns. The nanobelts have thickness of about a few tens of nanometers. Morphological and compositional analyses confirmed that the nanowire growth followed the vapor–liquid–solid mechanism and the nanobelts were formed by a subsequent vapor–solid process of condensation.  相似文献   

10.
High-rate deposition of nanostructured SiC films by thermal plasma PVD   总被引:1,自引:0,他引:1  
With ultrafine SiC powder as starting material, thermal plasma physical vapor deposition has been applied successfully to the deposition of SiC films on Si substrates. The control of processing parameters such as substrate temperature, powder feeding rate and composition of plasma gases, permits the deposition of SiC films on a wide area of around 400 cm2 with a variety of microstructures from amorphous to nanostructured and with various morphologies from dense to columnar. For the nanostructured case, the crystallite size was between 3 and 15 nm and the maximum deposition rate calculated based on the actual deposition duty time reached 200 nm/s. The deposition mechanism is discussed briefly.  相似文献   

11.
电化学制备Bi2Te3纳米线用于微型温差发电器   总被引:1,自引:0,他引:1  
借助于电化学沉积的方法,在氧化铝纳米孔内生长Bi2Te3材料,从而形成温差电纳米线阵列.利用SEM,XRD and TEM分析手段对制备的纳米线形貌和结构进行了分析,测量了纳米线的组成和温差电性能.p型和n型Bi2Te3纳米线材料的Seebeck系数经过测量分别为260μV/K和-188μV/K(307K),比同类的块状温差电材料性能高.同时研究了沉积电位对氧化铝模板中纳米孔的填充率的影响,并对纳米线阵列的电阻进行了测量.尝试了利用n型和P型Bi2Te3纳米线阵列制备一种新型的微型温差发电器.  相似文献   

12.
In many 2D materials reported thus far, the forces confining atoms in a 2D plane are often strong interactions, such as covalent bonding. Herein, the first demonstration that hydrogen (H)‐bonding can be utilized to assemble polydiacetylene (a conductive polymer) toward a 2D material, which is stable enough to be free‐standing, is shown. The 2D material is well characterized by a large number of techniques (mainly different microscopy techniques). The H‐bonding allows splitting of the material into ribbons, which can reassemble, similar to a zipper, leading to the first example of a healable 2D material. Moreover, such technology can easily create 2D, organic, conductive nanowire arrays with sub‐2‐nm resolution. This material may have potential applications in stretchable electronics and nanowire cross‐bar arrays.  相似文献   

13.
A nanofabrication method for the production of ultra-dense planar metallic nanowire arrays scalable to wafer-size is presented. The method is based on an efficient template deposition process to grow diverse metallic nanowire arrays with extreme regularity in only two steps. First, III–V semiconductor substrates are irradiated by a low-energy ion beam at an elevated temperature, forming a highly ordered nanogroove pattern by a “reverse epitaxy” process due to self-assembly of surface vacancies. Second, diverse metallic nanowire arrays (Au, Fe, Ni, Co, FeAl alloy) are fabricated on these III–V templates by deposition at a glancing incidence angle. This method allows for the fabrication of metallic nanowire arrays with periodicities down to 45 nm scaled up to wafer-size fabrication. As typical noble and magnetic metals, the Au and Fe nanowire arrays produced here exhibited large anisotropic optical and magnetic properties, respectively. The excitation of localized surface plasmon resonances (LSPRs) of the Au nanowire arrays resulted in a high electric field enhancement, which was used to detect phthalocyanine (CoPc) in surface-enhanced Raman scattering (SERS). Furthermore, the Fe nanowire arrays showed a very high in-plane magnetic anisotropy of approximately 412 mT, which may be the largest in-plane magnetic anisotropy field yet reported that is solely induced via shape anisotropy within the plane of a thin film.
  相似文献   

14.
The lamellar lyotropic liquid crystalline phases of Brij56 nonionic surfactants were used to template the deposition of nanostructured palladium films on α-Al2O3 substrates. The reaction between hydrazine hydrate and Pd2+ dissolved within the aqueous domains of the liquid crystalline phase generated the nanostructured palladium. The X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission election microscopy (TEM) studies indicated that the resulting films possessed regular arrays of channels with periodicity of 1 nm, which was obviously smaller than that of the templates. The size mismatch might arise from the discharge of nitrogen during the reaction and the relatively low Pd2+ concentrations.  相似文献   

15.
采用金属催化剂诱导化学蚀刻法首先在单晶硅片上制备出具有高长径比的纳米硅线阵列, 然后通过超声振荡法将硅线阵列破碎为纳米硅线粉体, 最后将其作为锂离子电池的负极材料, 系统研究了金属银催化剂制备过程和各向异性化学蚀刻过程对硅片表面形貌特征的影响, 发现银催化剂在蚀刻过程出现溶解/再沉积现象。通过优化AgNO3、HF、H2O2等试剂的浓度, 在大面积范围内得到了高长径比的纳米硅线阵列。借助超声波的作用将硅线从硅片上切割下来, 制备成纳米硅线负极进行了充放电循环测试, 观察到标准的硅锂合金/去合金化反应平台, 前五次循环的比容量均超过1800 mAh/g。  相似文献   

16.
Madaria AR  Yao M  Chi C  Huang N  Lin C  Li R  Povinelli ML  Dapkus PD  Zhou C 《Nano letters》2012,12(6):2839-2845
Vertically aligned, catalyst-free semiconducting nanowires hold great potential for photovoltaic applications, in which achieving scalable synthesis and optimized optical absorption simultaneously is critical. Here, we report combining nanosphere lithography (NSL) and selected area metal-organic chemical vapor deposition (SA-MOCVD) for the first time for scalable synthesis of vertically aligned gallium arsenide nanowire arrays, and surprisingly, we show that such nanowire arrays with patterning defects due to NSL can be as good as highly ordered nanowire arrays in terms of optical absorption and reflection. Wafer-scale patterning for nanowire synthesis was done using a polystyrene nanosphere template as a mask. Nanowires grown from substrates patterned by NSL show similar structural features to those patterned using electron beam lithography (EBL). Reflection of photons from the NSL-patterned nanowire array was used as a measure of the effect of defects present in the structure. Experimentally, we show that GaAs nanowires as short as 130 nm show reflection of <10% over the visible range of the solar spectrum. Our results indicate that a highly ordered nanowire structure is not necessary: despite the "defects" present in NSL-patterned nanowire arrays, their optical performance is similar to "defect-free" structures patterned by more costly, time-consuming EBL methods. Our scalable approach for synthesis of vertical semiconducting nanowires can have application in high-throughput and low-cost optoelectronic devices, including solar cells.  相似文献   

17.
A reproducible wafer‐scale method to obtain 3D nanostructures is investigated. This method, called corner lithography, explores the conformal deposition and the subsequent timed isotropic etching of a thin film in a 3D shaped silicon template. The technique leaves a residue of the thin film in sharp concave corners which can be used as structural material or as an inversion mask in subsequent steps. The potential of corner lithography is studied by fabrication of functional 3D microfluidic components, in particular i) novel tips containing nano‐apertures at or near the apex for AFM‐based liquid deposition devices, and ii) a novel particle or cell trapping device using an array of nanowire frames. The use of these arrays of nanowire cages for capturing single primary bovine chondrocytes by a droplet seeding method is successfully demonstrated, and changes in phenotype are observed over time, while retaining them in a well‐defined pattern and 3D microenvironment in a flat array.  相似文献   

18.
Long vertically aligned ZnO nanowire arrays were synthesized using an ultra-fast microwave-assisted hydrothermal process. Using this method, we were able to grow ZnO nanowire arrays at an average growth rate as high as 200?nm?min(-1) for maximum microwave power level. This method does not suffer from the growth stoppage problem at long growth times that, according to our investigations, a normal microwave-assisted hydrothermal method suffers from. Longitudinal growth of the nanowire arrays was investigated as a function of microwave power level and growth time using cross-sectional FESEM images of the grown arrays. Effect of seed layer on the alignment of nanowires was also studied. X-ray diffraction analysis confirmed c-axis orientation and single-phase wurtzite structure of the nanowires. J-V curves of the fabricated ZnO nanowire-based mercurochrome-sensitized solar cells indicated that the short-circuit current density is increased with increasing the length of the nanowire array. According to the UV-vis spectra of the dyes detached from the cells, these increments were mainly attributed to the enlarged internal surface area and therefore dye loading enhancement in the lengthened nanowire arrays.  相似文献   

19.
An Al-doped ZnO (AZO) seed layer is prepared on the back side of a porous alumina membrane (PAM) substrate by spin coating followed by annealing in a vacuum at 400 °C. Zinc oxide in ordered arrays mediated by a high aspect ratio and an ordered pore array of AZO/PAM is synthesized. The ZnO nanowire array is prepared via a 3-electrode electrochemical deposition process using ZnSO4 and H2O2 solutions at a potential of − 1 V (versus saturated calomel electrode) and temperatures of 65 and 80 °C. The microstructure and chemical composition of the AZO seed layer and ZnO/AZO/PAM nanowire arrays are characterized by field emission scanning electron microscopy (FE-SEM), high-resolution transmission electron microscopy (HR-TEM), and energy-dispersive X-ray spectroscopy (EDS). Results indicate that the ZnO/AZO/PAM nanowire arrays were assembled in the nanochannel of the porous alumina template with diameters of 110–140 nm. The crystallinity of the ZnO nanowires depends on the AZO seed layer during the annealing process. The nucleation and growth process of ZnO/AZO/PAM nanowires are interpreted by the seed-layer-assisted growth mechanism.  相似文献   

20.
An effective and inexpensive method is developed to fabricate periodic arrays by sacrificial colloidal monolayer template route by chemical deposition and further physical deposition. By a colloidal template induced precursor solution dipping strategy, different periodic arrays of semi‐hollow sphere array, inverse opal with monolayer pore arrays and hole arrays are obtained under different conditions. After magnetron sputtering deposition, their morphologies are changed to novel micro/nanostructured arrays of honeycomb‐shaped arrays, hollow cavity arrays, and regular network arrays due to multiple direction deposition of sputtering deposition and shadow effect. After coating a gold thin layer, these periodic micro/nanostructured arrays are used as SERS active substrates and demonstrate a very stable SERS performance compared with periodic arrays achieved by direct colloidal template‐induced chemical deposition. Additionally, a honeycomb‐shaped array displays better SERS enhancement than that of a hollow cavity array or a regular network array. After optimization of honeycomb‐shaped arrays with different periodicities, an array with periodicity of 350 nm demonstrates much stronger SERS enhancement and possesses a low detection limit of 10?11 M R6G. Such stable SERS performance is useful for practical application in portable Raman detecting devices to detect organic molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号