首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cu2S film that directly grows on porous Cu foam has been fabricated by a novel dry thermal sulfuration approach. The crystalline structure and morphological observation of the as-synthesized Cu2S/Cu were characterized by X-Ray diffraction (XRD) and field-emission scanning electron microscopy (FE-SEM), respectively. The electrochemical performance of the Cu2S/Cu as cathode for Li-ion battery was studied by charge/discharge test and cyclic voltammetry (CV) measurement. The results indicate that the Cu2S/Cu cathode exhibits excellent cycle stability and rate capability. When applying a charge/discharge rate of 0.25 C, it delivers initial discharge and charge capacity of 0.74 and 0.40 mAh cm−2, respectively. After 100 cycles, the discharge and charge capacity are both 0.41 mAh cm−2, showing no obvious capacity attenuation. Besides, even after 140 cycles at various rates from 0.3 C to 60 C, the discharge capacity of the Cu2S/Cu cathode can restore 97.8% when lowering the charge/discharge rate to 0.3 C.  相似文献   

2.
Well dispersed Fe3O4 nanoparticles with mean size about 160 nm are synthesized by a simple chemical method at atmosphere pressure. The products are characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), and Raman spectrum. Electrochemical properties of the as-synthesized Fe3O4 nanoparticles as anode electrodes of lithium ion batteries are studied by conventional charge/discharge tests, showing initial discharge and charge capacities of 1140 mAh g−1 and 1038 mAh g−1 at a current density of 0.1 mA cm−2. The charge and discharge capacities of Fe3O4 electrode decrease along with the increase of cycle number, arriving at minimum values near the 70th cycle. After that, the discharge and charge capacities of Fe3O4 electrode begin to increase along with the increase of cycle number, arriving at 791 and 799 mAh g−1 after 393 cycles. The morphology and size of the electrode after charge and discharge tests are characterized by SEM, which exhibits a large number of dispersive particles with mean size about 150 nm.  相似文献   

3.
The thin film Sn-Co-Ni alloy electrodes were prepared by electroplating on copper foil as current collector. The structure of the electroplated porous thin film Sn-Co-Ni alloy electrode is investigated by XRD, FE-SEM, and EDAX. The electrochemical performance is analyzed by using a battery cycler at the current rate of 0.1 C to cut-off potentials of 0.01 and 1.20 V vs. Li/Li+ and also cyclic voltammeter. Experimental results illustrate that the initial discharge capacity of the Sn-Co-Ni alloy anode is 717 mAh g−1. The discharge capacity has been in increasing order between 2nd and 10th cycling and then maintained the stable capacity. It is found that the charge and discharge capacity of thin film Sn-Co-Ni alloy electrode obtained an average reversibility behavior and the better cycle stability.  相似文献   

4.
A non-enzymatic biosensor was developed using boron-doped nanocrystalline diamond (BDND) based on a Cu electrode with Cu(OH)2 dendritic architecture. The Cu(OH)2 nanoflower electrode was covered with a BDND layer using an electrostatic self-assembly seeding method with nanodiamond particles and hot-filament chemical vapor deposition. X-ray diffraction and Raman spectral analysis confirmed that the BDND nanoflower electrode was synthesized onto Cu(OH)2 nanoflowers. Field-emission scanning electron microscope images showed that the fabricated electrodes were nanoflowers possessing large surface areas. From cyclic voltammetry, the peak currents of an BDND/Cu(OH)2/Cu electrode was about 7, 6.2, and 5.9 times higher than that of the Cu foil, Cu(OH)2/Cu, and BDND/Cu electrodes, respectively. A biosensor based on BDND/Cu(OH)2/Cu exhibited excellent performance for glucose detection, and it had a linear detection range of 0 to 6 mM, a correlation coefficient of 0.9994, a low detection limit of 9 μM, and a high sensitivity of 2.1592 mA mM− 1 cm− 1.  相似文献   

5.
Yingying Hu 《Thin solid films》2010,518(23):6876-6882
Large-scale copper nanowall array on the bulk Fe-Co-Ni alloy substrate has been prepared in aqueous solution at room temperature via an electroless deposition method. The thickness of the nanowalls is about 15 nm. A possible growth mechanism of the nanowalls was proposed. The effects of reaction temperature, reaction time and the amount of critical agent (Fe3+) on the morphology and crystalline phase of the nanowalls were investigated. Furthermore, the electrochemical performance of Sn film supported on the as-prepared copper nanowalls current collector is enhanced in comparison with that on the commercial copper foil when used as anode for Li-ion batteries with the operating voltage window of 0.01-2.0 V (vs. Li). After 20 cycles, the discharge capacity of Sn-Cu nanowalls anode still remained 365.9 mAh g− 1, that is, 40% retention of the reversible capacity, while the initial charge capacity of Sn film cast on commercial Cu foil was 590 mAh g− 1, dropping rapidly to 260 mAh g− 1 only after 10 cycles.  相似文献   

6.
Amorphous Si (a-Si) thin film anodes were prepared by pulsed laser deposition (PLD) at room temperature. Structures and properties of the thin films were investigated using X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and electrochemical measurements. Galvanostatic charge/discharge tests of half cells using lithium counter electrode were conducted at a constant current density of 100 μA/cm2 in different voltage windows. Cyclic voltammetry (CV) was obtained between 0 and 1.5 V at various scan rates from 0.1 to 2 mV/s. The apparent diffusion coefficient (DLi) calculated from the CV measurements was about ∼10−13 cm2/s. The Si thin film anode was also successfully coupled with LiCoO2 thin film cathode. The a-Si/LiCoO2 full cell showed stable cycle performance between 1 and 4 V.  相似文献   

7.
The electrolytic deposition of TiO2 thin films on platinum for lithium batteries is carried out in TiCl4 alcoholic solution and the films are subsequently annealed. The as-prepared films are amorphous TiO(OH)2·H2O, transformed into anatase TiO2 at 350 °C, and then gradually into rutile TiO2 at 500 °C. Cyclic voltammograms show oxidation and reduction peaks at 2.20 and 1.61 V, respectively, corresponding to charge and discharge plateaus at 1.98 and 1.75 V vs. Li+/Li. The specific capacity decreases with increasing current density for film of 128-nm thickness in the initial discharge. It is observed that the diffusion flux of Li+ insertion/extraction into/from TiO2 controls the reaction rate at higher current densities. Consequently, at low film thickness, high discharge capacity (per weight) is found for the initial cycle at a current density of 10 μA cm− 2. However, the capacity of prepared films in various thicknesses approach 103 ± 5 mAh g− 1 after 50 cycles, since the formation of cracks for thicker films offers shorter diffusion paths for Li+. In addition, TiO2 films show electrochromic properties during lithiation and delithiation.  相似文献   

8.
Chalcopyrite based photovoltaic materials Cu(InxGa1 − x)(SySe1 − y)2 (CIGSSe) are substituted in the cation and anion lattice to adopt the semiconductor bandgap to the terrestrial solar spectrum. In-situ X-ray diffraction (XRD) investigations on the crystallisation of thin film absorber materials Cu(In,Ga)(S,Se)2 while annealing stacked elemental layers (SEL) show phase transitions proceeding during the chalcopyrite synthesis.Thin layers of metals with elemental ratio Cu:In:Ga = 3:2:1 are deposited onto Mo-coated polyimide foil by DC-magnetron sputtering. The metal precursor is covered with S and subsequently Se by thermal evaporation of the elements in chalcogen excess (S + Se) / (Cu + In + Ga) = 2.3. Investigated chalcogen ratios reach from pure Se to pure S. Crystalline phases formed during the annealing of SEL are qualitatively determined. The results are compared to conclusions drawn from previous experiments on Ga-free CuIn(S,Se)2 absorbers. The presence of Ga and S influences significantly the time-scale and the temperatures of phase transitions, i.e. the sulfoselenisation of precursor phases Cu16(In,Ga)9 and Cu9(Ga,In)4 proceeds faster with increasing S and is shifted to higher temperatures as compared to Ga-free Cu11In9/Cu16In9.  相似文献   

9.
Melt spinning was used to prepare Al75−XSi25CuX (X = 1, 4, 7, 10 mol%) alloy anode materials for lithium-ion batteries. A metastable supersaturated solid solution of Si and Cu in fcc-Al, α-Si and Al2Cu co-existed in the alloys. Nano-scaled α-Al grains, as the matrix, formed in the as-quenched ribbons. The Al74Si25Cu1 and Al71Si25Cu4 anodes exhibited initial discharge specific capacities of 1539 mAh g−1, 1324 mAh g−1 and reversible capacities above 472 mAh g−1, 508 mAh g−1 at the 20th cycle, respectively. The specific capacities reduced as the increase of the Cu content. AlLi intermetallic compound was detected in the lithiated alloys. It is concluded that the lithiation mechanism of the Al–Si-based alloys can be affected by the third component. The structural evolution and volume variation can be mitigated due to the formation of non-equilibrium state and the co-existence of nano-scaled α-Al, α-Si, and Al2Cu for the present alloys.  相似文献   

10.
In this work, the electrogravimetric behavior of copper electrodeposition on TiO2 electrodes was analyzed. Copper electrodeposition was carried out in 0.1 mol L− 1 H2SO4 using several concentrations of CuSO4. The voltammetric curve displays a redox processes. The first redox process occurs in the region of − 0.30 at 0.1 V (vs. saturated calomel electrode, SCE) and it is related to bulk Cu electrodeposition and stripping. For this cathodic process, it was observed that the mass gain increases both as the sweep rate decreases and as the concentration of copper increases. The second redox process, which occurs between − 0.1 V and 0.35 V (vs. SCE), the stripping charge (and mass) are independent of both sweep rate and CuSO4 concentration and, finally, there is a saturation charge (and saturation mass) as the deposition time is increased. From the saturated mass, obtained using an electrochemical quartz crystal nanobalance, for this electrodeposition process (248 ng cm− 2) a roughness factor of 1.8 was calculated for the TiO2 film.  相似文献   

11.
Ag2Cu2O3 thin films were deposited on glass substrates by RF magnetron sputtering of an equiatomic silver-copper target (Ag0.5Cu0.5) in reactive Ar-O2 mixtures. The reactive sputtering was done at varying power, oxygen flow rate and deposition temperature to study the influence of these parameters on the deposition of Ag2Cu2O3 films. The film structure was determined by X-ray diffraction, while the optical properties were examined by spectrophotometry (UV-vis-NIR) and photoluminescence. Furthermore, the film thickness and resistivity were measured by tactile profilometry and 4-point probe, respectively. Additional mobility, resistivity and charge carrier density Hall effect measurements were done on a few selected samples. The best films in terms of stoichiometry and crystallography were achieved with a sputtering power of 100 W, oxygen and argon flow rates of 20 sccm (giving a deposition pressure of 1.21 Pa) and a deposition temperature of 250 °C. The optical transmittance and photoluminescence spectra of films deposited with these parameters indicate several band gaps, most prominently, a direct one of around 2.2 eV. Electrical characterization reveals charge carrier concentrations and mobilities in the range of 1021-1022 cm− 3 and 0.01-0.1 cm2/Vs, respectively.  相似文献   

12.
In this paper, a simple solution-based method has been applied to fabricate metal chalcogenide nanostructures. Abundant Cu2S nanowires on Cu substrates are successfully prepared through the in-situ hydrothermal reaction between sulfur powder and Cu foil. It is observed that the addition of hydrazine and cetyltrimethylammonium bromide plays an important role in the growth of Cu2S nanowires. A rolling-up mechanism of metal chalcogenide film is used to illustrate the growth of these nanostructures. UV-vis spectrum of Cu2S nanowires reveals obvious absorption below the wavelength of 900 nm. The calculated band gap of Cu2S nanowires (1.5 eV) shows obvious blue shift because of the quantum size effect.  相似文献   

13.
By performing Z-scan method with a femtosecond laser (800 nm, 50 fs, 1 kHz), we investigated the third-order optical nonlinearities of a cuprous oxide (Cu2O) film. Single-phase Cu2O film deposited on a quartz substrate was obtained using the pulsed laser deposition technique. The structure properties, surface morphology and optical transmission spectrum were characterized by X-ray diffraction, scanning electron microscopy and double beam spectrophotometer, respectively. The Z-scan results show that the Cu2O film exhibits large nonlinear refractive index, n2 = 3 × 10− 3 cm2/GW, while the two-photon absorption coefficient, α2 = 40 cm/GW, is relatively small. It implies that the Cu2O film is a promising candidate for nonlinear photonic devices.  相似文献   

14.
Uniform films of Cu2O with thickness below 1 μm were prepared from a Cu(II) lactate solution. The deposits were compact and of high purity with the particle size varying from 60 to 400 nm. They were tested as electrodes in lithium batteries and their electrochemical response was consistent with the Cu2O + 2e + 2Li+ ↔ 2Cu + Li2O reaction. Nevertheless, the reversibility of this reaction was dependent on thickness. Kinetic factors associated with the poor electronic conductivity of Cu2O could account for the relevance of the influence of film thickness. The thinnest film, about 300 nm thick, exhibited the best electrochemical performance by sustaining a specific capacity as high as 350 Ah kg− 1.  相似文献   

15.
Hydrogen sulfide (H2S) was introduced into a microwave plasma chemical vapor deposition of microcrystalline diamond thin film. Secondary-ion mass spectroscopy showed that sulfur concentration was controlled from 2 × 1015 to 9 × 1017 cm− 3 by controlling the H2S/CH4 ratio, while that of hydrogen concentration was around 5 × 1020 cm− 3 and was independent of the H2S/CH4 ratio. Electrical conductance increased linearly as the S concentration increased from 2 × 1015 to 3 × 1016 cm− 3 without significant deterioration of film crystallinity, i.e., the amount of sp2 phase did not increase. Non-ohmic conduction was converted to ohmic conduction when the S concentration reached 9 × 1017 cm− 3 by increasing the H2S/CH4 ratio to 30,000 ppm. This modification was consistent to the formation of a graphitic phase by heavy S-doping, which was identified by Raman spectra and surface morphology.  相似文献   

16.
P-type transparent conductive oxides have potential applications in photovoltaics, transparent electronics, and organic optoelectronics. In this paper, results are presented on the synthesis of Cu2SrO2 thin films, a p-type transparent conducting oxide by a sol-gel route. Cu(II)methoxide and Sr-metal dissolved in anhydrous isopropanol were used as precursor for the sol preparation. For potassium (K) doping, K-acetate dissolved in anhydrous isopropanol was used as the precursor. Films were spin-coated onto substrates and partially pyrolysed in air at 225°C. After partial pyrolization, a two stage annealing sequence was used to achieve the final film microstructure and composition. Although combinations of oxygen pressure, annealing time, and annealing temperature were used to obtain phase pure Cu2SrO2 thin films, X-ray diffraction consistently showed the presence of Cu2O as a second phase with Cu2SrO2−the desired phase. Microstructural studies showed similar phase separation in the films and confirmed the microcrystalline nature. The best conductivities obtained for the undoped and 1% K-doped films were 2 × 10− 3 and 1.2 × 10− 2 S/cm, respectively. Both films showed a broad optical absorption edge in the visible range.  相似文献   

17.
Hydrothermal synthesis has been introduced to fabricate NiO precursor at different temperatures, then nanostructured NiO with a distinct flake-like morphology was obtained via heating at low temperature. The NiO nanoflakes are 50-80 nm in width and 20 nm in thickness. The electrochemical capacitive characterization of the as-prepared NiO was studied in 2 M KOH electrolyte solution. The as-prepared NiO exhibits excellent cycle performance and keeps 91.6% initial capacity over 1000 charge-discharge cycles. Electrochemical impedance spectroscopy study reveals that the NiO electrode is controlled by the mass transfer limitation, and its internal resistance is 0.2 Ω. A specific capacitance approximate to 137.7 F g−1 could be achieved at the current density of 0.2 A g−1 in the potential window of 0-0.46 V in 2 M KOH electrolyte solution, due to higher surface area of NiO nanoflakes, which facilitates transport of electrolyte ions during rapid charge/discharge process. Due to higher surface area of NiO nanoflakes, which facilitates transport of electrolyte ions during rapid charge/discharge process.  相似文献   

18.
Corrosion properties of a bulk Cu0.5NiAlCoCrFeSi glassy alloy such as electrochemical corrosion potential (ECP), potentiodynamic polarization, and weight loss measurements were carried out for the first time in 288 °C high-purity (outlet conductivity < 0.07 μS cm 1) water. The change of ECP with dissolved oxygen (DO) showed a sigmoid curve. In addition, the Cu0.5NiAlCoCrFeSi alloy exhibited a wide passive region and the passive current density was ∼ 2 × 10 4 A cm 2 in deaerated water containing 0.01 N sodium sulfate (Na2SO4) at 288 °C. A very low weight loss of ∼ 4.5 μg mm 1 was also found for the Cu0.5NiAlCoCrFeSi alloy after immersion in deaerated 288 °C water for 12 weeks.  相似文献   

19.
HfO2 and HfSiO films were prepared on Si substrates by using radio frequency magnetron sputtering (RFMS). Compositional, structural and electronic properties of the two films were investigated completely. X-ray photoelectron spectroscopy (XPS) spectra showed that the atom ratio of Hf to O was about 1:2 in the HfO2 film and the chemical composition of the HfSiO film was Hf37Si7O56. Grazing incidence X-ray diffraction (GI-XRD) patterns indicated crystallization in the HfO2 film after 400 °C annealing, but there is no detectable crystallization in the HfSiO film after 800 °C annealing. C-V measurements indicated that the dielectric constants for the HfO2 and HfSiO film were 20.3 and 17.3, respectively. The fixed charge densities were found to be 6.0 × 1012 cm−2 for the HfO2 film and 3.7 × 1012 cm−2 for the HfSiO film. I-V characteristics showed that the average leakage current densities were 2.4 μA/cm2 for the HfO2 film and 0.2 μA/cm2 for the HfSiO film at the gate bias of 1 V.  相似文献   

20.
CuIn1 − xAlxSe2 (CIAS) thin films (x = 0.06, 0.18, 0.39, 0.64, 0.80 and 1) with thicknesses of approximately 1 μm were formed by the selenization of sputtered Cu―In―Al precursors and studied via X-ray diffraction, inductively coupled plasma mass spectrometry and micro-Raman spectroscopy at room temperature. Precursor films selenized at 300, 350, 400, 450, 500 and 550 °C were examined via Raman spectroscopy in the range 50-500 cm− 1 with resolution of 0.3 cm− 1. Sequential formation of InxSey, Cu2 − xSe, CuInSe2 (CIS) and CIAS phases was observed as the selenization temperature was increased. Conversion of CIS to CIAS was initiated at 500 °C. For all CuIn1 − xAlxSe2 products, the A1 phonon frequency varied nonlinearly with respect to the aluminum composition parameter x in the range 172 cm− 1 to 186 cm− 1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号