首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 69 毫秒
1.
建立A型地铁车体结构和车内空腔有限元模型,应用模态分析技术分别对车体结构模态和车内空间声学模态进行了研究。结构模态分析表明:车体满足结构动态设计要求,但要加强端墙刚度、车顶与侧墙连接强度,以提高其疲劳寿命。声学模态分析表明,地铁车体对称的结构特点决定车内声场在横向、纵向和垂向同样具有对称性,使车内声场的各阶模态形状基本上呈前后、左右和上下对称分布,说明车内声场共鸣频率和模态形状主要由其几何形状决定。  相似文献   

2.
为了研究高速载客列车车体结构振动及车内声学特性,建立高速列车有限元模型,对全车体进行模态分析和轨道谱响应分析,并基于声与结构耦合对车体内腔进行声学模态分析。车体前200阶固有模态频率跨度为0.62~100.27 Hz,前6阶0.62~1.51 Hz为车身整体相对于转向架的低频振动,其余各阶为车身结构的弹性振动。当施加我国200 km/h等级提速线路通用轨道谱激励时,体振动在0~2.00 Hz的低频有较大响应。车体内腔前200阶声学模态频率跨度为0~126.66 Hz,在20~100 Hz之间模态比较密集。  相似文献   

3.
以地铁车体为研究对象,应用Hypermesh软件建立了车体有限元模型,依据标准规定利用ANSYS软件进行了静强度有限元计算和模态分析。结果表明,该车体结构能够满足强度、刚度及模态的相关标准,为其进一步优化改进提供了参考依据。  相似文献   

4.
用有限元法分析铁路客车车内空间的声学特性   总被引:5,自引:0,他引:5  
降低铁路客车车内噪声,提高乘坐舒适度已经成为铁路客车车辆设计者越来越重视的问题。针对某型铁路客车应用有限元法在较低的频率范围内对客车车内的声学特性进行了研究分析,得出了客车车内流体自身的模态和流体与车体耦合后车内流体的模态,并在给定激励下计算了客车车厢内部的声场。  相似文献   

5.
基于模态理论的有源声学结构控制机理研究   总被引:2,自引:0,他引:2  
有源声学结构是近年来提出的一种控制结构低频声辐射的有效方案,它是智能结构在噪声控制领域的具体应用,其控制机理是一个亟待解决的关键问题,文中结合声辐射模态和结构振动模态理论对该问题进行了研究并作了定量解释。研究结果表明:有源控制的机理在于减小结构主导辐射模态的幅度(声功率),同时保证低阶非主导辐射模态的幅度不会有大的升高;在控制高阶辐射模态幅度的同时,低阶辐射模态幅度也被有效控制;四个次级板能够抵消各种类型的振动模态对应的主导辐射模态,从而有效控制结构所有振动模态的声辐射。  相似文献   

6.
豪华大客车车内声场的模态分析   总被引:1,自引:0,他引:1  
结合典型豪华大客车采用有限元法进行了车内声场的模态分析.文中对内部纯流体声场,考虑座椅影响和考虑声场与车身结构之间耦合作用这三种情况分别建立了车内部声场的三维有限元计算模型,并对车内声场进行了声学的模态分析.  相似文献   

7.
陈晓梅  赵建 《振动与冲击》2007,26(10):174-176
介绍了轿车车内空腔声学模态,对实车的声模态进行了测试与分析,获得了车内空腔的声学共鸣频率和模态形状;提出了利用LMSTest_lab对轿车车内空腔声学模态进行测试的试验方法,为车内空腔的低频噪声研究提供了参考。  相似文献   

8.
地铁车内噪声特性   总被引:2,自引:0,他引:2  
对地铁车辆在静止及运行情况下进行车内噪声测试。测点布置在车体中央、风挡及转向架上方距地板面不同高度处。在静止情况下,空调送风口处噪声值为77.8 dB(A)。车辆运行分为隧道内和高架上两种情况,隧道内运行时,车内相应点处的噪声值比高架上高1.0-5.9 dB(A)。车辆在运行过程中对车内噪声影响较大的是轮轨噪声,车辆附属设备影响较小。车辆的密封性对车内噪声的分布有较大的影响,应提高车门、风挡的密封性。  相似文献   

9.
车内噪声控制中的结构-声场耦合模态分析方法   总被引:4,自引:0,他引:4  
车内噪声中的结构噪声是由车身结构振动与车内空腔声场的耦合产生的,传统的振动模态分析方法在针对车内噪声控制时由于没有考虑这种耦合特性而存在很大的局限性。本文在介绍结构-声场耦合模态分析方法的原理基础上,研究了该方法在车内噪声测试分析与控制中的应用与工程实现,并开发出了相应的测试分析系统。该系统在某车车内噪声控制中取得了明显的降噪效果。  相似文献   

10.
编织结构复合材料动态特性的实验模态分析   总被引:6,自引:0,他引:6       下载免费PDF全文
利用实验模态分析方法对碳纤维/环氧树脂编织结构增强复合材料的动态力学特性进行了实验研究, 确定了编织复合材料梁、管的振动模态参数与传递函数, 并与钢质梁、管的动态性能相比较。结果表明: 在冲击脉冲载荷作用下, 先进编织结构复合材料与传统金属材料相比具有较高的固有频率、阻尼比, 以及比刚度大、稳定性好、对冲击脉冲载荷作用的减震效果等良好的综合动力学特性。   相似文献   

11.
在新车身设计阶段,由于汽车内部诸多因素的不确定,用有限元计算声腔模态时对声腔模型进行了简化处理。对比了有无座椅和仪表盘挡板的车内声学模态结果,用边界元法进行了车内结构辐射声压计算和声贡献量分析,对改进车内噪声有一定参考。  相似文献   

12.
列车车轮振动模态声辐射效率研究   总被引:1,自引:0,他引:1  
根据列车车轮的几何对称性,用有限元法建立车轮的轴对称模型和90°扇区模型,计算不同节径数下的振动模态。在模态分析的基础上,应用边界元法计算了50—6000Hz频率范围内车轮振动模态的声辐射效率。结果显示,在低频段车轮振动模态声辐射效率较低,在高频段的辐射效率趋向于1。两种模型的计算结果一致,与理论相符。  相似文献   

13.
车身板件对车内噪声的贡献量分析   总被引:2,自引:0,他引:2  
讨论车身板件对车内空腔辐射噪声的贡献量分析.通过对声源强度和声学传递函数的乘积求和来进行某块板在目标位置声压贡献量的合成.利用互异法间接测量声学传递函数,通过截面面积和其法向加速度的乘积得到声源强度值.模拟计算前面试验边界条件建立的有限元模型,有限元计算结果和实测数据进行对比.  相似文献   

14.
以轮轨表面粗糙度为激励,利用车辆-轨道多刚体耦合振动模型计算轮轨作用力.利用有限元理论建立轮对的有限元分析模型,以轮轨作用力为激励进行轮对的振动频响分析.以振动响应分析结果作为边界条件,利用边界元理论建立轮对边界元声学分析模型,对轮对振动声学特性进行了计算分析.其结果与公认的模型和软件的计算结果相比具有较好的一致性,证明本文做法的正确性.  相似文献   

15.
结合某实际高铁高架车站候车厅,分别建立候车厅的有限元、边界元模型与统计能量法模型,采用直接边界元法计算20~200 Hz范围内的低频噪声,用统计能量法计算200~2 000 Hz范围内的高频噪声。计算结果通过实测结果进行验证,结果表明模型能够较准确地预测出候车厅内的噪声水平。进一步对候车厅各部分进行声学板块贡献度分析以及声腔子系统的声学贡献度分析,结果表明候车厅建筑顶棚对于候车厅内噪声的贡献水平最大,为候车厅的降噪提供指导。  相似文献   

16.
车内噪声预测与面板声学贡献度分析   总被引:14,自引:4,他引:14  
面板声学贡献度分析是汽车NVH特性研究的重要内容,识别各面板对车内场点的贡献度对于控制车内噪声有着重要意义。利用有限元结合边界元的方法,建立三维车辆乘坐室声固耦合模型,使用ANSYS软件计算出乘坐室在20-200Hz频率的声固耦合振动特性后,采用LMS Virtual.lab软件预测了驾驶员左、右耳的声压响应。并通过各壁板对驾驶员右耳声压的面板贡献度分析,得出了各壁板对驾驶员右耳总声压的贡献度,为降低车内某点噪声进行结构修改提供理论依据。通过对结构修改,有效降低了车内某点噪声。  相似文献   

17.
统计能量分析在汽车车内噪声分析中的应用   总被引:5,自引:0,他引:5  
建立了用于汽车车内高频噪声分析的整车SEA模型,介绍了工程设计中车身子系统SEA模型和整车噪声传递路径分析方法的应用,最后以分析实例说明了统计能量分析在汽车车内噪声性能设计中的适用性和准确性。  相似文献   

18.
针对某SRV车,建立可靠的白车身有限元模型、声腔边界元模型和有限元边界元耦合模型;在计算出场点声压频率响应的基础上,对峰值频率处进行面板贡献量分析,找出产生峰值声压的主要来源;基于模态修改法优化主要振动区域腹部节点的速度来降低车内噪声。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号