首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ligand for flt-3 (FLT3L) exhibits striking structural homology with stem cell factor (SCF) and monocyte colony-stimulating factor (M-CSF) and also acts in synergy with a range of other hematopoietic growth factors (HGF). In this study, we show that FLT3L responsive hematopoietic progenitor cells (HPC) are CD34+CD38-, rhodamine 123dull, and hydroperoxycyclophosphamide (4-HC) resistant. To investigate the basis for the capacity of FLT3L to augment the de novo generation of myeloid progenitors from CD34+CD38- cells, single bone marrow CD34+CD38- cells were sorted into Terasaki wells containing serum-free medium supplemented with interleukin-3 (IL-3), IL-6, granulocyte colony-stimulating factor (G-CSF), SCF (4 HGF) +/- FLT3L. Under these conditions, FLT3L recruited approximately twofold more CD34+CD38- cells into division than 4 HGF alone. The enhanced proliferative response to FLT3L was evident by day 3 and was maintained at all subsequent time points examined. In accord with these findings, we also show that transduction of CD34+CD38- cells with the LAPSN retrovirus is enhanced by FLT3L. The results of these experiments therefore indicate that increased recruitment of primitive HPC into cell cycle underlies the ex vivo expansion potential of FLT3L and also its ability to improve retroviral transduction of HPC.  相似文献   

2.
In the present study, we investigated the effects of stem cell factor (SCF) and/or thrombopoietin (TPO) on the cell production by cord blood CD34(+) cells using a serum-deprived liquid culture system. Although SCF alone supported a modest production of neutrophilic cells and a remarkable generation of mast cells, the addition of TPO to the culture containing SCF caused an apparent generation of neutrophilic cells, identified by immunocytochemical staining and flow cytometric analysis. The significant production of neutrophilic cells by SCF and TPO was persistently observed from 2 weeks to 2 to 3 months of culture. The interaction between SCF and TPO on the neutrophilic cell generation was greater than the combined effects of SCF with granulocyte colony-stimulating factor (G-CSF) or granulocyte-macrophage colony-stimulating factor (GM-CSF). The addition of neutralizing antibody against G-CSF or GM-CSF did not influence the SCF + TPO-dependent neutrophilic cell production. A single-cell culture study showed that not only CD34(+)CD38(+) c-kit+ cells but also CD34(+)CD38(-)c-kit+ cells were responsible for the neutrophilic cell generation. In clonal cell cultures, GM progenitors as well as erythroid progenitors and multipotential progenitors expanded in the cultures supplemented with SCF and TPO. The neutrophilic cells grown by SCF + TPO were at myeloblast to band cell stages, and scarcely matured to segmented neutrophils. In addition, the cells generated by SCF + TPO were stained with monoclonal antibodies against myeloperoxidase, elastase, lactoferrin, and CD11b, but they had negligible levels of alkaline phosphatase (ALP) and CD35. The replating of the CD34(-)c-kit-/low CD15(+) cells grown by SCF + TPO into a culture containing SCF + G-CSF permitted both the terminal maturation into segmented cells and the appearance of ALP and CD35. These results indicate the existence of a G-CSF/GM-CSF-independent system of neutrophilic cell production.  相似文献   

3.
Malignant cell contamination in autologous transplants is a potential origin of tumor relapse. Ex vivo expansion of CD34(+) blood progenitor cells (BPC) has been proposed as a tool to eliminate tumor cells from autografts. To characterize the influence of culture conditions on survival, growth, and clonogenicity of malignant cells, we isolated primary mammary carcinoma cells from pleural effusions and ascites of patients with metastatic breast cancer and cultured them in the presence of stem cell factor (SCF), interleukin-1beta (IL-1beta), IL-3, IL-6, and erythropoietin (EPO), ie, conditions previously shown to allow efficient ex vivo expansion of CD34(+) BPC. In the presence of serum, tumor cells proliferated during a 7-day culture period and no significant growth-modulatory effect was attributable to the presence of hematopoietic growth factors. When transforming growth factor-beta1 (TGF-beta1) was added to these cultures, proliferation of breast cancer cells was reduced. Expansion of clonogenic tumor cells was seen in the presence of SCF + IL-1beta + IL-3 + IL-6 + EPO, but was suppressed by TGF-beta1. Cocultures of tumor cells in direct cellular contact with hematopoietic cells showed that tumor cell growth could be stimulated by ex vivo expanded hematopoietic cells at high cell densities (5 x 10(5)/mL). In contrast, culture under serum-free conditions resulted in death of greater than 90% of breast cancer cells within 7 days and a further decrease in tumor cell numbers thereafter. In the serum-free cultures, hematopoietic cytokines and cellular contact with CD34(+) BPC could not protect the tumor cells from death. Therefore, ex vivo expansion of CD34(+) BPC in serum-free medium provides an environment for efficient purging of contaminating mammary carcinoma cells. These results have clinical significance for future protocols in autologous progenitor cell transplantation in cancer patients.  相似文献   

4.
There is a need to determine whether culture conditions may exist for ex vivo expansion of hematopoeitic stem cells (HSC), which favor solely proliferative self-renewal of HSC as opposed to proliferation with differentiation. Using single cells, we studied the effects of individual and combinations of cytokines in serum-free medium on the kinetics of the first cell doubling and the resulting phenotype of each of individual daughter cell. CD34(+)Thy-1(+)lin- cells were plated 1 cell per well in Terasaki plates in serum-free medium containing cytokines. Each well containing a single cell was monitored daily over 7 days for maintenance, division, or death. When division occurred in an individual well, the phenotype of the daughter cells was determined by staining with anti-CD34 fluorescein isothiocyanate (FITC)- and phycoerythrin (PE)-conjugated lineage specific antibodies. The cumulative percent of wells with an undivided single cell, wells in which the cell had divided, and wells in which the cell had died were scored. The number of doublets with conserved phenotype (CD34(+)lin-) was compared to those wells with one or more differentiated daughter cells (CD34(+)lin+). Over 7 days, cells cultured in single factors showed that between 13% (interleukin-6 [IL-6]) and 29% (thrombopoietin [TPO]) of the cells were undivided, between 13% (IL-1) and 35% (TPO) of the cells doubled, and between 35% (TPO) and greater than 60% (IL-11, IL-1, or hepatocyte growth factor [HGF]) died. When combinations of cytokines were used over 7 days, between 5% (FLT-3 ligand [FLT-3L], stem cell factor [SCF], IL-3, IL-6, granulocyte colony-stimulating factor [G-CSF], beta nerve growth factor [betaNGF]) and 22% (FLT-3L + HGF) of the cells remained undivided, between 15% (HGF, IL-1, IL-11, G-CSF) and 68% (SCF + TPO) of the cells had doubled and between 27% (FLT-3L + TPO) and 70% (HGF, IL-1, IL-11, G-CSF) died. The combination of FLT-3L + TPO induced the highest total percent (64. 6%) of cells with conserved phenotype (percent conserved doublets + percent with 1 cell conserved), followed by SCF + TPO, (50%) and the combination of FLT-3L, SCF, IL-3, IL-6, G-CSF, betaNGF (53%). These combinations also produced the highest yield of cells with conserved phenotype after one division (FLT-3L + TPO - 81 cells/100 initial cells, SCF + TPO - 68 cells/100 initial cells) (P =.01). Observation of the time of the initial cell division and phenotype of the daughter cells allowed us to identify candidate combinations of cytokines that promote maintenance of lin- cells (TPO), or recruit the primitive cells to divide and undergo phenotypic self-renewal (FLT-3L + TPO, SCF + TPO).  相似文献   

5.
Genetic alteration of stem cells ex vivo followed by bone marrow transplantation could potentially be used in the treatment of numerous diseases and malignancies. However, there are many unanswered questions as to the best source of hematopoietic cells for long-term reengraftment and the most effective way to introduce foreign genes into this target cell. We have compared retroviral-mediated gene transfer into CD34+-enriched cells derived from peripheral blood (PB), bone marrow (BM), or fetal umbilical cord blood (CB). Cells from all three sources that had been expanded ex vivo in the presence of stem cell factor (SCF), interleukin-3 (IL-3), IL-6, and granulocyte colony-stimulating factor (G-CSF) showed transduction efficiencies ranging from 5-45%, as measured by acquisition of G418 resistance. The average efficiencies of gene transfer from multiple experiments for PB, BM, and CB were not statistically different. To determine the effect of ex vivo expansion on gene transfer into CB CD34+ cells, we compared the transduction efficiencies of cells exposed to virus immediately after harvest and CD34 selection or after 6 days of culture CD34+ CB cells were more effectively transduced after expansion in culture, showing gene transfer efficiencies 3- to 5-fold higher on day 6 compared with day 0. Last, we examined retroviral transduction via spinoculation of CB CD34+ cells and found it to be approximately as effective as our standard transduction with no significant loss of cell viability as measured by colony formation in semi-solid medium.  相似文献   

6.
Tumor cells have been found in autologous hematopoietic cell transplants used after high-dose chemotherapy. To specifically eliminate contaminating mammary tumor cells during ex vivo expansion of CD34+ hematopoietic progenitor cells, we used recombinant immunotoxins (ITs) directed against cell-surface antigens expressed on mammary carcinoma cells. ITs were expressed from fusion cDNAs combining a single-chain antibody fragment (scFv) directed against the Erb-B2 or epidermal growth factor (EGF) receptors with a truncated Pseudomonas exotoxin A fragment devoid of its cell-binding domain. CD34+ hematopoietic progenitor cells did not express Erb-B2 and EGF receptors as detected by Western blotting. Ex vivo expansion of total hematopoietic cells or of colony-forming cells from CD34+ progenitors in the presence of stem-cell factor (SCF), interleukin-1 (IL-1), IL-3, IL-6, and erythropoietin (Epo) was not affected when ITs were added to the cultures. In contrast, MDA-MB 453 and MCF-7 mammary carcinoma cells were depleted in a dose- and time-dependent manner by more than 3 log in coculture with CD34+ cells over a period of 7 days in the presence of 100 to 1,000 ng/mL of anti-Erb-B2 IT. This included elimination of the subpopulations with regrowth potential. Similarly, addition of either anti-Erb-B2 or anti-EGF receptor ITs to primary breast cancer cells isolated from patients with metastatic disease resulted in elimination of cytokeratin-positive cells in seven of seven samples. ITs are highly efficient and convenient to use for the depletion of mammary tumor cells during ex vivo expansion of hematopoietic progenitor-cell autografts.  相似文献   

7.
Dendritic cells (DCs) are the most powerful professional antigen-presenting cells (APC), specializing in capturing antigens and stimulating T-cell-dependent immunity. In this study we report the generation and characterization of functional DCs derived from both steady-state bone marrow (BM) and circulating haemopoietic CD34+ cells from 14 individuals undergoing granulocyte colony-stimulating factor (G-CSF) treatment for peripheral blood stem cells (PBSC) mobilization and transplantation. Clonogenic assays in methylcellulose showed an increased frequency and proliferation of colony-forming unit-dendritic cells (CFU-DC) in circulating CD34+ cells, compared to that of BM CD34+ precursors in response to GM-CSF and TNF-alpha with or without SCF and FLT-3L. Moreover, peripheral blood (PB) CD34+ cells generated a significantly higher number of fully functional DCs, as determined by conventional mixed lymphocyte reactions (MLR), than their BM counterparts upon different culture conditions. DCs derived from mobilized stem cells were also capable of processing and presenting soluble antigens to autologous T cells for both primary and secondary immune response. Replacement of the early-acting growth factors SCF and FLT-3L with IL-4 at day 7 of culture of PB CD34+ cells enhanced both the percentage of total CD1a+ cells and CD1a+ CD14- cells and the yield of DCs after 14 d of incubation. In addition, the alloreactivity of IL-4-stimulated DCs was significantly higher than those generated in the absence of IL-4. Furthermore, autologous serum collected during G-CSF treatment was more efficient than fetal calf serum (FCS) or two different serum-free media for large-scale production of DCs. Thus, our comparative studies indicate that G-CSF mobilizes CD34+ DC precursors into PB and circulating CD34+ cells represent the optimal source for the massive generation of DCs. The sequential use of early-acting and intermediatelate-acting colony-stimulating factors (CSFs) as well as the use of autologous serum greatly enhanced the growth of DCs. These data may provide new insights for manipulating immunocompetent cells for cancer therapy.  相似文献   

8.
The goal of our study was to identify cytokine combinations that would result in simultaneous ex vivo expansion of both the megakaryocyte (Mk) and granulocyte lineages, since these cell types have the potential to reduce the periods of thrombocytopenia and neutropenia following chemotherapy. We investigated the effects of cytokine combinations on expansion of the Mk (CD41a+ cells and colony forming unit [CFU]-Mk) and granulocyte (CD15+ cells and CFU-granulocyte/monocyte [GM]) lineages. Peripheral blood CD34+ cells were cultured in serum-free medium with interleukin 3 (IL-3), stem cell factor (SCF), and various combinations of thrombopoietin (TPO), IL-6, GM-CSF, and/or G-CSF. The Mk lineage was primarily influenced by TPO in our cultures, although Mk and CFU-Mk numbers were increased when TPO was combined with IL-6. The primary stimulator of the granulocyte lineage was G-CSF, although many synergistic and additive effects were observed with addition of other factors. Expansion of CFU-GM increased upon addition of more cytokines. The cytokine combination of IL-3, SCF, TPO, IL-6, GM-CSF and G-CSF produced the greatest number of granulocytes and CFU-GM. The minimum cytokines necessary for expansion of both the Mk and granulocyte lineages included TPO and G-CSF, since no other factors examined could increase Mk and granulocyte numbers to the same extent. The number of hematopoietic progenitors produced in our culture system should be sufficient for successful engraftment following myelosuppressive therapy if produced on a scale of about one liter.  相似文献   

9.
The Flk-2/flt3 ligand (FL) was evaluated and compared with c-kit ligand (KL) for its in vitro proliferative effects on CD34+ cells from human fetal liver, umbilical cord blood, bone marrow, and mobilized peripheral blood. Using a 7-day liquid culture system, FL in combination with interleukin-3 (IL-3), interleukin-6 (IL-6), and granulocyte colony-stimulating factor (G-CSF) was comparable with KL in combination with IL-3, IL-6, and G-CSF for the expansion of hematopoietic progenitors. When FL-containing cultures were assayed after 21 or 28 days, a greater number of progenitors were generated as compared with KL-containing cultures. Using bone marrow microvascular endothelial cells as support stroma, cultures supplemented with FL generated a greater number of progenitors in both the nonadherent and adherent layers at day 35. These data suggest that FL ligand, in combination with other cytokines, can be used for short-term ex vivo expansion of hematopoietic progenitors and facilitates the preservation and possible expansion of primitive cells capable of long-term generation of progenitors.  相似文献   

10.
We have previously defined the experimental conditions for hematopoietic cell expansion. CD34+ human marrow cells were maintained in a serum-free, stroma-free liquid culture system, at a concentration of 10(3) cells/ml, for 10 days at 37 degrees C, in the presence of various cytokine combinations. The basic combination of early cytokines SCF (100 ng/ml), IL3 (5 ng/ml), IL6 (10 ng/ml), has a modest stimulating effect on all compartments: the number of total cells increased 56-fold and CD34+ cells 1-fold; CFU-GM, BFU-E and CFU-MK, increased 6-fold, 5-fold and 3-fold respectively. As far as CD34+ cells are concerned, the subpopulation CD34+/CD38- was only maintained. Interestingly, the addition of 100 ng/ml of Flt3 ligand (FL) significantly enhanced the amplification of total cells (276-fold), CFU-GM (54-fold) and BFU-E (15-fold). The number of CD34+ cells and the subpopulation CD34+/38- increased to 7-fold and 22-fold respectively. Moreover, long term culture-initiating cells (LTC-ICs) in limiting dilution assay (LDA) were found to increase 3-fold. Further addition of MGDF (10 ng/ml), G-CSF (10 ng/ml) and Epo (0.5 U/ml), in various combinations, acted synergically with the previous cytokine combination to support the formation of multiple types of hematopoietic colonies. As expected, the addition of MGDF increased the number of CFU-MK up to 5-fold expansion. Interestingly, MGDF addition was synergistic also for BFU-E and CFU-GM expansion. In the combination of SCF+ IL3+ IL6+ FL + MGDF, CFU-GM expanded to 73-fold and BFU-E to 17-fold. G-CSF in SCF + IL3 + IL6 + FL conditions stressed the expansion of the granulopoietic compartment doubling the number of CFU-GM and CD33+ cells, with no consequence on LTC-IC or BFU-E. Surprisingly, G-CSF induced the expansion of the megakaryocytic lineage up to 6-fold, in a similar way as MGDF. Epo in presence of SCF+ IL3+ IL6+/-FL dramatically increased total cell expansion (2300-2800-fold), mainly erythroblastic (70% glycoA) without exhaustion of all other compartments. The simultaneous use of these three cytokines (MGDF + G-CSF + Epo) in presence of four early cytokines (SCF + IL3 + IL6 + FL) clearly allows a significant expansion of all hematopoietic compartments, precursors, progenitors, and primitive stem cells. In conclusion, these data show the ability of a stroma-free, serum-free liquid system to expand all myeloid lineages, including CFU-MK and LTC-IC which are critical for clinical application of ex vivo expanded cells.  相似文献   

11.
Ex vivo expanded bone marrow CD34+DR- cells could offer a graft devoid of malignant cells able to promptly reconstitute hemopoiesis after transplant. We investigated the specific expansion requirements of this subpopulation compared to the more mature CD34+ and CD34+DR+ populations. The role of stromal factors was assessed by comparing the expansion obtained when the cells were cultured in (1) long-term bone marrow culture (LTBMC) medium conditioned by an irradiated human BM stroma (CM), (2) medium supplemented with 15% FBS (FBSM) and (3) non-conditioned LTBMC medium (LTM) for 21 days. The effect of the addition of G-CSF (G) and/or of MIP-1alpha (M) to a combination of IL-3, SCF, IL-6 and IL-11 (3, S, 6, 11) was analyzed. Compared to CD34+DR- cells, CD34+ and CD34+DR+ cells gave rise to a similar number of viable cells and to a lower progenitor expansion. The expansion potential of CD34+ and CD34+DR+ cells was equivalent in CM and in FBSM except for both the emergence of CD61 + megakaryocytic cells and LTC-IC maintenance which were improved by culture in CM. In contrast, expansion from CD34+DR- cells was enhanced by CM for all the parameters tested. Compared to FBSM, CM induced a higher level of CFU-GM and BFU-E expansion and allowed the emergence of CD61+ cells. HPP-CFC were maintained or expanded in CM but decreased in FBSM. Compared to input, the number of LTC-IC remaining after 21 days of CD34+DR- expansion culture was strongly decreased in FBSM and variably maintained or expanded in CM. Comparison with LTM indicated that stroma conditioning is responsible for this effect. G-CSF significantly improved CFU-GM and HPP-CFC expansion from CD34+DR- cells without being detrimental to the LTC-IC pool. The growth of CD61+ cells was significantly enhanced by G-CSF in CM. Addition of MIP-1alpha had no significant effect either on progenitor expansion or on LTC-IC, regardless of culture medium. We conclude that factors present in stroma- conditioned medium are necessary to support the expansion of the whole spectrum of hematopoietic cells from CD34+DR- cells and to support the expansion of cell subsets from CD34+ and CD34+DR+.  相似文献   

12.
Cytokines produced by stromal cells induce the proliferation and differentiation of hematopoietic cells in the marrow microenvironment. We hypothesized that cross-talk between hematopoietic cells at different stages of differentiation and stromal cells influences stromal cytokine production and is responsible for maintaining steady-state hematopoiesis and responding to stress situations. We show that coculture of primitive CD34(+) cells in contact with or separated by a transwell membrane from irradiated human bone marrow stromal layers induces a fourfold to fivefold increase in interleukin-6 (IL-6) and granulocyte colony-stimulating factor (G-CSF) levels in the stromal supernatant (SN) during the first week. Levels of both cytokines decreased to baseline after coculture of CD34(+) cells for 3 to 5 weeks. Coculture of more mature CD15(+)/CD14(-) myeloid precursors induced only a transient 1.5- to 2-fold increase in IL-6 and G-CSF at 48 hours. Neither CD34(+) nor CD15(+)/CD14(-) cells produced IL-6, G-CSF, IL-1beta, or tumor necrosis factor alpha. When CD34(+) cells were cultured in methylcellulose medium supplemented with cytokines at concentrations found in stromal SN or supplemented with stromal SN, a fourfold to fivefold increase in colony formation was seen over cultures supplemented with erythropoietin (EPO) only. When cultures were supplemented with the increased concentrations of IL-6 and G-CSF detected in cocultures of stroma and CD34(+) cells or when CD34(+) cells were cocultured in methylcellulose medium in a transwell above a stromal layer, a further increase in the number and size of colonies was seen. The colony-forming unit-granulocyte-macrophage-stimulating activity of stromal SN was neutralized by antibodies against G-CSF or IL-6. These studies indicate that primitive CD34(+) progenitors provide a soluble positive feedback signal to induce cytokine production by stromal cells and that the observed increase in cytokine levels is biologically relevant.  相似文献   

13.
The article provides a review of the role of granulocyte colony-stimulating factor (G-CSF) for mobilization and transplantation of peripheral blood progenitor and stem cells. Recombinant gene technology has permitted the production of highly purified material for therapeutic use in humans. Progenitor cells can be assessed using semisolid and liquid culture assays or direct immunofluorescence analysis of cells expressing CD34. This antigen is found on lineage-determined hematopoietic progenitor cells as well as on more primitive stem cells with extensive self-renewal capacity. Administration of G-CSF during steady-state hematopoiesis or following cytotoxic chemotherapy leads to an increase of hematopoietic progenitor cells in the peripheral blood. The level of circulating CD34+ cells post-chemotherapy is greater compared with G-CSF administration during steady state. On the other hand, CD34+ cells harvested post-chemotherapy contain a smaller proportion of more primitive progenitor cells (CD34+/HLA-DR- or CD34+/CD38-) compared with G-CSF treatment alone. Independent of the mobilization modality, the amount of previous cytotoxic chemo- and radiotherapy adversely affects the yield of hematopoietic progenitor cells. While continuous subcutaneous administration of G-CSF between 5 and 16 micrograms/kg bodyweight is preferred, additional dose-finding studies may be helpful to optimize current dose schedules. Adhesion molecules like L-selectin, VLA (very late antigen)-4 and LFA (leukocyte function antigen)-1 are likely to play a role in mobilization, since these antigens are expressed on CD34+ cells from bone marrow in different densities compared with blood-derived CD34+ cells collected following G-CSF-supported cytotoxic chemotherapy. It is also relevant for transplantation that during G-CSF-enhanced recovery post-chemotherapy, peripheral blood is enriched with a greater proportion of CD34+ cells expressing Thy-1 in comparison with CD34+ cells from bone marrow samples obtained on the same day or before the mobilization therapy was started. The early nature of the CD34+/Thy-1+ cells is very likely since this phenotype has been found on stem cells from human fetal liver and bone marrow and on cord blood cells. As a result, G-CSF-mobilized blood stem cells provide rapid and sustained engraftment following high-dose therapy, including myeloablative regimens. Positive selection of CD34+ cells as well as ex vivo expansion using different cytokines are currently being investigated for purging and improvement of short-term recovery post-transplantation. Future developments include the use of blood-derived hematopoietic stem cells for somatic gene therapy. The availability of growth factors has been an important prerequisite for the development of these new avenues for cell therapy.  相似文献   

14.
Defective marrow stroma, or microenvironment, have been proposed as one of several mechanisms to account for bone marrow failure in aplastic anaemia (AA). This could involve defects in positive- or negative-acting haemopoietic regulator expression by AA stroma, or alteration of normal stroma-stem cell interactions. We have used a sensitive bioassay to investigate production of granulocyte-colony stimulating factor (G-CSF), granulocyte-macrophage-colony stimulating factor (GM-CSF), interleukin (IL)-3, IL-6 and stem cell growth factor (SCF), by normal and AA stroma in long-term bone marrow culture (LTBMC). LTBMC were grown to confluence, irradiated and harvested to yield a single cell suspension. These cells were cocultured with normal target bone marrow mononuclear cells (BMMC), or CD34+ cells, in clonogenic assays, in the absence of exogenous cytokines. Cytokines responsible for the colony-stimulating activity (CSA) and burst-promoting activity (BPA) produced by stromal cells were identified by neutralizing antibodies to specific cytokines. All normal stroma populations produced G-CSF and GM-CSF, 93% produced IL-3, 80% produced IL-6, and 70% produced SCF. Similarly, all AA stroma produced G-CSF and GM-CSF, and 71% produced SCF. In contrast, only 71% of AA stroma produced IL-3 and 36% produced IL-6. Target cell stimulation was not dependent on direct stroma-target cell contact, suggesting production of soluble cytokines. However, although both IL-6 and G-CSF were detected in LTBMC supernatants by enzyme-linked immunoassay (ELISA), IL-3 and GM-CSF were undetectable, perhaps indicating low-level local production of these factors.  相似文献   

15.
Exit of primitive hematopoietic progenitor cells (HPCs) from the G0 phase of the cell cycle in response to in vitro cytokine stimulation is a limiting step in successful ex vivo expansion. Simultaneous DNA/RNA staining with Hoechst 33342 and pyronin Y was used to separate human bone marrow CD34+ cells residing in G0 (G0CD34+) from those cycling in G1 and S/G2+M. Compared with CD34+ cells isolated in G1, G0CD34+ cells were characterized by a delayed response to cytokine stimulation and were enriched for long-term hematopoietic culture-initiating cells. We next compared the activation kinetics of individually sorted G0CD34+ cells stimulated with stem cell factor (SCF), flt3-ligand (FL), or interleukin-3 (IL-3) as single factors. In a novel clonal proliferation assay, the functional status of cells that had remained quiescent after an initial 7-day period and of those that had completed successive division cycles under each of these three factors was evaluated by assessment of subsequent proliferative capacity and maintenance of colony-forming cell precursor (pre-CFC) activity. All three cytokines were equally able to support the survival of primitive HPCs in the absence of cell division. Cells that did not respond to any cytokine stimulation for 7 days retained higher proliferative and pre-CFC activities than dividing cells. The hematopoietic function of cells that divided in response to SCF, FL, or IL-3 decreased after each division cycle. However, G0CD34+ cells displayed a heterogeneous response pattern to cytokine stimulation whereby SCF appeared to have a superior ability to promote the cycling of cells with high proliferative and pre-CFC activities. These results indicate that HPCs reside in opposing hierarchies of hematopoietic potential and responsiveness to cytokine stimulation. The data also begin to indicate relationships between cellular division in response to different stimuli and maintenance of hematopoietic function.  相似文献   

16.
Primitive human hemopoietic progenitor cells identified by surface membrane markers CD33-CD34+ are capable of expansion into lineage-restricted precursors following in vitro stimulation by hemopoietic regulators such as stem cell factor (SCF) and interleukin-3 (IL-3). In search of ionic currents involved in cytokine-induced progenitor cell growth and differentiation, human umbilical cord blood CD33-CD34+ cells were subjected to perforated patch-clamp recordings following overnight incubation with SCF and/or IL-3. An inward rectifying potassium channel (Kir) was found in 33% of control unstimulated cells, in 34% of cells incubated with IL-3, in 31% of cells incubated with SCF and in 75% of cells incubated with IL-3 plus SCF. Kir activity increased with elevation of extracellular potassium and was blocked by extracellular Cs+ or Ba2+ Antisense oligodeoxynucleotides directed against Kir blocked both mRNA and functional expression of Kir channels. Kir antisense also inhibited the in vitro expansion of cytokine-stimulated CD33-CD34+ cells into erythroid (BFU-E) and myeloid (GM-CFU) progenitors in 7-day suspension cultures. Extracellular Cs+ or Ba2+ induced a similar degree of inhibition (40-60%) of progenitor cell generation. These findings strongly suggest an essential role for Kir in the process of cytokine-induced primitive progenitor cell growth and differentiation.  相似文献   

17.
18.
We have demonstrated that long-term culture initiating cells (LTC-IC) are maintained in a stroma noncontact (SNC) culture where progenitors are separated from stroma by a microporous membrane and LTC-IC can proliferate if the culture is supplemented with interleukin-3 (IL-3) and macrophage inflammatory protein-1alpha (MIP-1alpha). We hypothesize that the same conditions, which result in LTC-IC proliferation, may also maintain lymphoid progenitors. Natural killer (NK) cells are of lymphoid lineage and a stromal-based culture can induce CD34+/Lin-/DR- cells to differentiate along the NK cell lineage. We developed a three-step switch culture assay that was required to demonstrate the persistence of NK progenitors in CD34+/Lin-/DR- cells assayed in SNC cultures supplemented with IL-3 and MIP-1alpha. When CD34+/Lin-/DR- progeny from the SNC culture were plated sequentially into "NK cell progenitor switch" conditions (contact with stromal ligands, hydrocortisone-containing long-term culture medium, IL-2, IL-7, and stem cell factor [SCF]) followed by "NK cell differentiation" conditions (contact with stromal ligands, human serum, no hydrocortisone, and IL-2), significant numbers of CD56+/CD3- NK resulted, which exhibited cytotoxic activity against K562 targets. All steps are required because a switch from SNC cultures with IL-3 and MIP-1alpha directly to "NK cell differentiation" conditions failed to yield NK cells suggesting that critical step(s) in lymphoid commitment were missing. Additional experiments showed that CD34+/CD33- cells present after SNC cultures with IL-3 and MIP-1alpha, which contained up to 30% LTC-IC, are capable of NK outgrowth using the three-step switch culture. Limiting dilution analysis from these experiments showed a cloning frequency within the cultured CD34+/CD33- population similar to fresh sorted CD34+/Lin-/DR- cells. However, after addition of FLT-3 ligand, the frequency of primitive progenitors able to develop along the NK lineage increased 10-fold. In conclusion, culture of primitive adult marrow progenitors ex vivo in stroma-derived soluble factors, MIP-1alpha, and IL-3 maintains both very primitive myeloid (LTC-IC) and lymphoid (NK) progenitors and suggests that these conditions may support expansion of human hematopoietic stem cells. Addition of FLT-3 ligand to IL-2, IL-7 SCF, and stromal factors are important in early stages of NK development.  相似文献   

19.
The possibility of primitive hematopoietic cell ex vivo expansion is of interest for both gene therapy and transplantation applications. The engraftment of autologous rhesus peripheral blood (PB) progenitors expanded 10 to 14 days were tracked in vivo using genetic marking. Stem cell factor (SCF)/granulocyte colony-stimulating factor (G-CSF)-mobilized and CD34-enriched PB cells were divided into two equal aliquots and transduced with one of two retroviral vectors carrying the neomycin-resistance gene (neo) for 4 days in the presence of interleukin-3 (IL-3), IL-6, and SCF in the first 5 animals, IL-3/IL-6/SCF/Flt-3 ligand (FLT) in 2 subsequent animals, or IL-3/IL-6/SCF/FLT plus an autologous stromal monolayer (STR) in the final 2. At the end of transduction period, one aliquot (nonexpanded) from each animal was frozen, whereas the other was expanded under the same conditions but without vector for a total of 14 days before freezing. After total body irradiation, both the nonexpanded and expanded transduced cells were reinfused. Despite 5- to 13-fold higher cell and colony-forming unit (CFU) doses from the expanded fraction of marked cells, there was greater short- and long-term marking from the nonexpanded cells in all animals. In animals receiving cells transduced and expanded in the presence of IL-3/IL-6/SCF/FLT, engraftment by the marked expanded cells was further diminished. This discrepancy was even more pronounced in the animals who received cells transduced and expanded in the presence of FLT and autologous stroma, with no marking detectable from the expanded cells. Despite lack of evidence for expansion of engrafting cells, we found that the addition of FLT and especially STR during the initial brief transduction period increased engraftment with marked cells into a clinically relevant range. Levels of marked progeny cells originating from the nonexpanded aliqouts were significantly higher than that seen in previous 4 animals receiving cells transduced in the presence of IL-3/IL-6/SCF, with levels of 10% to 20% confirmed by Southern blotting from the nonexpanded IL-3/IL-6/SCF/FLT/STR graft compared with 0.01% in the original IL-3/IL-6/SCF cohort. These results suggest that, although expansion of PB progenitors is feasible ex vivo, their contribution towards both short- and long-term engraftment is markedly impaired. However, a brief transduction in the presence of specific cytokines and stromal support allows engraftment with an encouraging number of retrovirally modified cells.  相似文献   

20.
Circulating CD34+ cell populations characterized by a low rate (up to five) or high rate (more than five) of cell divisions were isolated from 8 d cultures in the presence of stem cell factor (SCF), interleukin-3 (IL-3), granulocyte-macrophage colony stimulating factor (GM-CSF), granulocyte colony stimulating factor (G-CSF), erythropoietin (EPO), Flt3 ligand and Peg-rHu megakaryocyte growth and development factor (Peg-rHuMGDF) using the fluorescent dye 5,6-carboxyfluorescein diacetate succinimidyl ester (CFDA-SE) and flow cytometric cell sorting. Phenotypic characterization of cells which had experienced up to five divisions (CFDA-SEbright) showed a similar surface antigen expression to starting, freshly isolated CD34+ cells. Conversely, cells which experienced more than five divisions (CFDA-SEdim) showed a differentiating behaviour, down-regulating CD34 antigen and acquiring differentiation markers. CFDA-SEbright cells were significantly enriched in CD105 (endoglin) positive precursors as compared to both freshly isolated CD34+ and CFDA-SEdim cells. Functional analysis indicated that CFDA-SEbright had a 3-fold and 10-fold greater cumulative cloning efficiency as compared to freshly isolated CD34+ cells and CFDA-SEdim cells, respectively. CFDA-SEbright cells retained the vast majority of LTC-IC and showed a LTC-IC frequency 2.8-fold higher than that found in freshly isolated CD34+ cells. RT-PCR and Western blot analyses showed significantly higher bcl-2 RNA and protein levels in CFDA-SEbright cells as compared to freshly isolated CD34+ and CFDA-SEdim cells. This study indicates that cytokine low-responding circulating CD34+ cells (CFDA-SEbright cells) represent a functionally, phenotypically and molecularly distinct multipotent progenitor population with biological properties associated with primitive precursors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号