首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
IL-12 is a heterodimeric cytokine produced by APC that promotes the development of CD4+ Th1 cells and their IFN-gamma production after TCR/CD3 triggering. We here investigated the capacity of IL-12 to modify the expression on T cells of CD40 ligand (CD40L or CD154), a molecule transiently expressed on activated T cells and known to be of utmost importance for cognate interaction with B cells and for activation of dendritic cells and macrophages. Our data demonstrate that IL-12 up-regulates CD40L expression on anti-CD3-activated human peripheral blood T cells. For optimal induction of CD40L, IL-12 synergizes with IL-2 as well as with other costimulatory interactions, such as B7/CD28. The effect of IL-12 was observed at both the protein and the mRNA level. T cells costimulated by IL-12 provided more efficient help for IL-4-dependent B cell proliferation and for IgG production than when activated in the absence of IL-12. This helper activity was blocked by an mAb against CD40L, indicating that the effect of IL-12 on B cells is mediated indirectly through CD40L. The data thus suggest that the effects of IL-12 on cellular and humoral immune responses are partly mediated through CD40L induction.  相似文献   

2.
IL-10 is a well-documented immunosuppressant that inhibits macrophage-dependent Ag presentation and CD4+ T cell proliferation in vitro. We report that IL-10 inhibits alloantigen-specific proliferative responses and induces a long lasting anergic state in human purified CD8+ T cells when added concomitantly with the Ag in the presence of APC. Moreover, the generation of allospecific cytotoxic activity is inhibited by IL-10. These effects are indirect and are mediated through inhibition of the costimulatory functions of APC. In contrast, IL-10 has no direct inhibitory effects on the proliferation of purified CD8+ T cells activated by anti-CD3 mAb and promotes the growth of activated CD8+ T cells in combination with low doses of IL-2. Taken together, these results indicate that IL-10 has differential effects on CD8+ T cells depending on their state of activation, which may explain both the enhancing and inhibitory effects observed after IL-10 treatment in different in vivo experimental models.  相似文献   

3.
Tolerance is thought to occur when Ag is presented to T cells in the absence of costimulatory interactions from APC accessory molecules. Of the professional APC, the resting B cell may be the main tolerizing cell in vivo. We have analyzed several aspects of activation of naive transgenic CD4 cells stimulated with resting or activated B cells presenting peptide Ag. Similar results were obtained with stimulation from peptide presenting fibroblast APC lacking or expressing B7-1 with intracellular adhesion molecule-1. TCR ligation with little or no accessory molecule coreceptor engagement induced efficient blastogenesis; up-regulation of CD25, CD44, CD69, CD95 and CD71; and down-regulation of CD62L over a 48-h period. Accessory molecule help enhanced the expression of CD25, CD44, CD69, and CD71, but to very modest degrees. Only two molecules, CD40 ligand and IL-2, were found to be extremely dependent on accessory molecule help, with little or no expression evident with peptide presented on resting B cells or class II-positive fibroblasts. T cells induced on resting B cells expanded minimally over 3 days, and this was followed by extensive cell death and hyporesponsiveness of the resulting cells. These studies suggest that under tolerizing conditions, such as Ag presentation by resting B cells, much of the naive CD4 response is induced efficiently. Partial activation, however, may be the overall result due to the lack of CD40 ligand expression, which may regulate costimulatory activity in APC and, in turn, may contribute to limiting the production of IL-2 required for T cell expansion and survival.  相似文献   

4.
Previous studies on human Th subset development were restricted to the analysis of naive T cells activated with anti-CD3 mAb in the absence of physiologic APC. In this study, we have analyzed the role of cytokines and physiologic APC on T cell maturation in an Ag-specific system, in which naive neonatal CD4 T cells were primed with allogeneic dendritic cells (DC). We found that the cytokine profile of primed cells was dependent upon 1) the ratio between T cells and allogeneic DC and 2) the endogenous production of IL-4 and IL-12. Neutralization of IL-4 during primary MLR increased IFN-gamma production at priming and shifted the phenotype of primed cells from Th0 to Th1. These effects were IL-12 dependent, in that they were suppressed by anti-IL-12 Abs. The production of IL-12 in primary MLR was further evidenced by the presence of IL-12 p40 in the culture supernatant fluids. IL-12 production was suppressed by exogenous IL-4 and increased by anti-IL-4 blocking mAbs, indicating that endogenous IL-4 down-regulated IL-12 production by DC. Finally, IL-12 was produced as a result of T cell/DC interaction involving the CD40/CD40 ligand and CD28/B7 costimulation pathways, as revealed by the inhibitory effect of anti-CD40 ligand mAb and CTLA-4Ig. These observations suggest that in neutral conditions, Ag presentation by DC results in the coordinate production of naive T cell-derived IL-4 and DC-derived IL-12 that in concert shape the cytokine profile of Th cells.  相似文献   

5.
After UV exposure of skin, epidermal Langerhans cells (LC) are depleted, whereas CD11b+CD36 CD1a- monocytes/macrophages (UV-Mphi) infiltrate. Different immunological outcomes in vivo are mediated by LC (sensitization) and UV-Mphi (tolerance) which may be related to the distinct T cell activation states that these antigen-presenting cells (APC) induce. We previously demonstrated that CD4+ T lymphocytes activated by UV-Mphi are, in contrast to LC-activated T cells, IL-2Ralpha deficient, and we hypothesize that this differential T cell activation is related to differences in co-stimulatory molecules between UV-Mphi and LC. Using four-color flow cytometry, we found a reduced capacity to up-regulate expression of the important co-stimulatory molecules CD40, B7-1 and B7-2 by UV-Mphi relative to LC. This alteration in co-stimulatory molecule expression was selective, because UV-Mphi express equal levels of ICAM-1 and ICAM-3, and increased levels of LFA-1, relative to LC. After bidirectional signaling with T cells during alloantigen presentation, UV-Mphi still exhibited less CD40 and B7-1 than LC. Addition of IFN-gamma induced CD40 and B7-1 expression on UV-Mphi and restored IL-2Ralpha expression on UV-Mphi-activated T cells but had no effect on IL-2Ralpha on resting or LC-activated T cells. The restoration of IL-2Ralpha expression on UV-Mphi-activated T cells by IFN-gamma was inhibited (67 %, p = 0.005) by addition of neutralizing anti-CD40. Therefore, differences in co-stimulatory molecule expression, in particular CD40, on UV-Mphi and LC are critical in determining the distinct T cell activation induced by these APC.  相似文献   

6.
Secondary responses to Ag in vivo are characterized by more rapid kinetics and greatly enhanced magnitude compared with primary responses. For CD4+ T cells, this is in part due to a greater frequency of Ag-specific memory cells, and may also reflect differences in responsiveness of memory vs naive cells to stimulation. To compare activation requirements and the role of accessory cells, naive and memory cells were stimulated with immobilized anti-CD3 in the presence or absence of APC. With anti-CD3 alone, naive cells proliferated slightly but produced no detectable IL-2, whereas memory cells proliferated well with significant IL-2 production. Increasing numbers of T-depleted APC greatly enhanced responses of naive cells to levels equivalent to those of memory cells, whereas for memory cells only IL-2 production increased slightly. The response of naive cells was equivalent in magnitude and kinetics to that of memory cells when low density APC, enriched in dendritic cells and depleted of resting B cells, were used with anti-CD3. To directly compare naive and memory responses in an Ag-specific model, we examined CD4+ cells specific for a peptide of pigeon cytochrome c fragment isolated from TCR-alpha beta transgenic mice. Naive cells were compared with 4-day activated blasts (effectors) and memory cells generated by adoptive transfer of effectors to adult thymectomized bone marrow reconstituted mice, in which the cells return to a resting state but still respond to recall Ag. Naive cells responded to Ag on dendritic cells and activated B cells but not on resting B cells or macrophages. In contrast, both memory cells and effectors were stimulated by all APCs, including resting B cells and macrophage to a limited extent. The ability of memory cells to respond to all APC types was confirmed using Ag-specific cells generated by in vivo priming with keyhole limpet hemocyanin. These results suggest that memory cells are considerably less dependent on accessory cell costimulation than naive cells, but that naive cells can respond equivalently in both magnitude and kinetics if Ag is presented on costimulatory APCs such as dendritic cells. In addition, these studies suggest that the enhanced secondary T cell response is due to a combination of the increased frequency of Ag-specific cells and their ability to react to Ag presented on a wider range of APC types, rather than an inherent capacity of memory T cells to respond better and faster.  相似文献   

7.
We recently reported that previously activated T cells, irrespective of the nature of the first stimulus they encountered, are unable to respond to Staphylococcal enterotoxin B (SEB), nor to soluble anti-CD3 monoclonal antibody (mAb) presented by splenic antigen-presenting cells (APC). Such previously activated T cells are, however, fully capable of responding to plate-bound anti-CD3 plus splenic APC. These data suggest differential integration of the T-cell receptor (TCR) and co-stimulatory signalling pathways in naive versus antigen-experienced T cells. Consistent with this hypothesis, anti-CD28 mAb restores the proliferative capacity of resting ex vivo CD45RBlo CD4+ T cells (representing previously activated T cells) to both soluble anti-CD3 mAb and SEB. Interestingly, mAb-mediated engagement of cytotoxic T-lymphocyte antigen-4 (CTLA-4) completely negates the rescue effects mediated by anti-CD28 mAb in CD45RBlo cells. Nevertheless, the non-responsiveness of CD45RBlo CD4+ T cells cannot be reversed by anti-CTLA-4 Fab fragments, indicating that it is not related to negative regulatory effects of CTLA-4 engagement itself. Interestingly, the addition of interleukin-2 (IL-2) restores the proliferative capacity of CD45RBlo CD4+ T cells to SEB and soluble anti-CD3 mAb. Moreover, when rescued by IL-2, the cells are less susceptible to the negative regulatory effects of CTLA-4 engagement. Together, these findings suggest that the non-responsiveness of CD45RBlo CD4+ T cells to certain stimuli may be related to inadequate TCR signalling, primarily affecting IL-2 production.  相似文献   

8.
CD40/CD40 ligand interactions are required for the development of T cell-dependent Ab responses in vivo. The role of these cell surface molecules in contributing to T cell cytokine production and the development of effector populations other than B cells and T cells is, however, less well defined. We have examined the in vivo effects of blocking CD40/CD40 ligand interactions on the type 2 mucosal immune response that follows oral inoculation of mice with the nematode parasite, Heligmosomoides polygyrus. Administration of anti-gp39 (CD40L) mAb (MR1) blocked H. polygyrus-induced elevations in serum IgG1 levels and inhibited elevations in blood eosinophils and mucosal mast cells at day 14 after inoculation. Anti-gp39 mAb markedly inhibited B cell blastogenesis 8 days after H. polygyrus inoculation but did not inhibit elevations in B cell class II MHC expression. Maximal elevations in B7-2 expression required signaling through both CD40 and the IL-4R. Elevations in T cell cytokine gene expression and elevations in the number of IL-4-secreting cells were unaffected by treatment with anti-gp39 mAb, although IL-4 production was inhibited by anti-IL-4R mAb. These results suggest that CD40/CD40L interactions are not required to activate T cells to produce cytokines but are required for the activation and proliferation of other effector cells associated with the type 2 response.  相似文献   

9.
Human thymic epithelial cells express CD40, so we examined the possible role of CD40 in activation of thymocytes. We observed that both CD4+CD8- and CD4-CD8+ thymocytes proliferate after stimulation by anti-CD3 mAb in the presence of cultured thymic epithelial cells. Costimulation of CD4+ thymocytes by thymic epithelial cells is partly inhibited by an anti-CD40 mAb, but this mAb has no effect on costimulation of CD8+ thymocytes. The selective costimulatory ability of CD40 for CD4+ thymocytes was confirmed in experiments in which thymocytes were stimulated with anti-CD3 in the presence of murine P815 cells transfected with CD40 cDNA. The level of costimulation induced by P815-CD40 was comparable with that induced by P815 cells expressing CD80 (B7.1). Treatment of thymocytes with the Ca2+ ionophore ionomycin and the phorbol ester PMA or with anti-CD3 mAb resulted in up-regulation of the CD40 ligand, suggesting that this molecule is involved in CD40-mediated costimulation of human thymocytes. Costimulation of thymocytes by CD80 strongly increased anti-CD3-induced death of fetal thymocytes. In contrast, costimulation by CD40 did not increase anti-CD3-mediated apoptosis of these thymocytes. To confirm that CD40 does not affect anti-CD3-induced cell death, we established a variant of the Jurkat T leukemic cell line that constitutively expresses CD40L and analyzed the sensitivity of this cell line for activation-induced apoptosis. In contrast to CD80, CD40 failed to increase anti-CD3-mediated apoptosis in CD40L+ Jurkat cells, whereas both CD40 and CD80 strongly increased IL-2 production induced by anti-CD3. These findings suggest that costimulation by CD40 is involved in clonal expansion of CD4+ thymocytes but not in activation-induced cell death.  相似文献   

10.
Modulation of VLA integrins was studied in several human T cell clones upon specific and nonspecific cellular activation. Human activated T lymphocytes down-regulated both alpha 4 beta 1 and alpha 4 beta 7 integrins upon specific recognition of alloantigens (cytotoxic T cells) or in the presence of Staphylococcus enterotoxin B (superantigen recognizing noncytotoxic T cells). In contrast, the expression of other membrane integrins, such as VLA-1 and VLA-5 integrins, was not modified. Down-regulation of alpha 4 beta 1 and alpha 4 beta 7 integrins was observed as early as 3 h after stimulation, lasted later than 72 h and was partially inhibited by cytochalasin D. Interestingly, neither target cells nor NK cells modulated CD49d expression after interaction with T cells of K562, respectively, suggesting that CD49d expression was linked to specific T cell activation. The down-regulation of the CD49d chain in T cell clones stimulated with immobilized anti-CD3 mAbs confirmed the role of TCR-mediated activation in CD49d regulation. However, the CD3-independent cellular aggregation induced by soluble anti-CD43 mAb was also able to strongly down-regulate alpha 4 beta 1 and alpha 4 beta 7. The present work shows the first evidence that CD49d subunit-bearing integrin expression is distinctly regulated from other integrins after Ag or superantigen recognition by human activated T cells. CD49d modulation may be relevant for the traffic and tissue localization of locally activated T cells during immune responses.  相似文献   

11.
Activated T cells induce proliferation and differentiation of resting B cells in vitro through their CD40 molecules and lymphokine receptors. However, despite constitutive B cell expression of CD40 and lymphokine receptors, widespread nonspecific polyclonal B cell activation by activated T cells is seldom observed in vivo. The present study was designed to test the hypothesis that signals delivered via the B cell antigen (Ag) receptor (membrane immunoglobulin, mIg) and major histocompatibility complex (MHC) class II molecules enhance B cell responsiveness to CD40-mediated signals, providing specificity to the Ag-nonspecific, MHC-unrestricted CD40 signal. To test this hypothesis, both an Ag-specific mouse B cell clone CH12.LX, and freshly isolated resting splenic B cells were cultured with either soluble or membrane-bound forms of the T cell ligand for CD40 (CD40L), in the presence or absence of additional signals provided by Ag or anti-IgM, interleukin-4, and class II-specific monoclonal antibody (mAb). Differentiation of CH12.LX cells and proliferation of splenic B cells in response to both forms of CD40L was greatly enhanced by exposure to mIg-mediated signals, with greatest enhancement seen when cells were cultured with Ag prior to receiving other signals. Response to CD40L was further enhanced by concurrent culture with class II-specific, but not class I-specific mAb. Enhancement was greatest at limiting concentrations of CD40L. The ability of class II MHC-mediated signals to enhance Ag-specific B cell responsiveness to CD40-mediated signaling may selectively promote the activation of B cell clones capable of cognate interactions with helper T cells.  相似文献   

12.
The role of CD4 in T cell activation has been attributed to its capacity to increase the avidity of interaction with APC and to shuttle associated Lck to the TCR/CD3 activation complex. The results presented in this study demonstrate that ligation of CD4 inhibits ongoing responses of preactivated T cells. Specifically, delayed addition of CD4-specific mAb is shown to inhibit Ag- or mAb-induced responses of both primary T cells and T cell clonal variants. The Ag responses of the latter are independent of the adhesion provided by CD4; thus the observed inhibition is not due to blocking CD4-MHC interactions. Further, analysis of the clonal variants demonstrates that CD4-associated Lck is not essential for the inhibition observed, as anti-CD4 inhibits responses of clonal variants, expressing a form of CD4 unable to associate with Lck (double cysteine-mutated CD4). The inhibition is counteracted by the addition of exogenous IL-2, demonstrating that the block is not due to a lesion in IL-2 utilization, rather its production. It is demonstrated that the delayed addition of anti-CD4 results in a rapid reduction in steady-state levels of IL-2 mRNA in both primary T cells and clonal variants.  相似文献   

13.
The blockade of B7, using B7 antagonists such as anti-CD80 and/or -CD86 mAbs or CTLA4Ig in vivo, has been shown to induce an efficient suppression of T cell-mediated immune responses in allograft, allergy, and autoimmune models. However, this treatment does not result in complete tolerance. In this study, we examined CD28-B7-independent activation pathways in the pathogenesis of graft-vs-host disease (GVHD) using allogeneic T cells from CD28-deficient mice. Acute GVHD was induced in the absence of CD28 on donor T cells and its manifestations were obvious in the lymphoid tissues. The CD28-independent GVHD was significantly improved by treatment with anti-CD40 ligand (CD40L) mAb. In contrast, treatment with anti-CD80 plus anti-CD86 mAbs exacerbated the clinical manifestations of GVHD and increased the T cell response against host alloantigen, resulting in the expression of CTLA4, CD40L, and CD25 on splenic T cells. These data suggested that the CD40L-CD40 pathway significantly contributed to the CD28-independent pathogenesis of acute GVHD, whereas the CTLA4-B7 pathway acted protectively in the development of GVHD. These results imply that selectively blockading CD28, instead of disrupting both CD28 and CTLA4, would be a better therapeutic strategy for GVHD. Additionally, the simultaneous use of CD40 antagonists may be advantageous.  相似文献   

14.
15.
C-C chemokines play an important role in recruitment of T lymphocytes to inflammatory sites. T lymphocytes secrete chemokines, but the activation requirements for chemokine production by T cells are uncertain. We studied the regulation of C-C chemokine production by CD28 costimulatory signals by murine T lymphocytes. Splenocytes from BALB/c mice cultured with anti-CD3 mAb expressed macrophage-inflammatory protein (MIP)-1alpha mRNA and secreted MIP-1alpha, which was inhibited by anti-B7-1 plus anti-B7-2 mAbs. MIP-1alpha production by Ag-stimulated T cells from DO.11.10 TCR transgenic mice was augmented by anti-CD28 mAb and increased compared with DO.11.10/CD28(-/-) cells. When T cell costimulation was provided by IL-2, MIP-1alpha was not enhanced. Studies with IL-2, IL-4, STAT4, and STAT6 knock-out mice suggested that chemokine production is controlled by pathways different from those regulating T cell differentiation. Thus, CD28 costimulation may amplify an immune response by stimulating T cell survival, proliferation, and production of chemokines that recruit T cells to inflammatory sites.  相似文献   

16.
We have previously found that thymic B cells, particularly thymic CD5+ B cells, show low responsiveness to the usual B cell stimulants such as lipopolysaccharide or anti-IgM plus interleukin (IL)-4, although they proliferate and produce antibodies after direct interaction with major histocompatibility complex class II-restricted T blasts. These findings raise the possibility that a CD40-CD40 ligand (L) interaction is involved in the activation of thymic B cells. In the present study, we therefore examine this possibility using CD40L-transfected Chinese hamster ovary (CHO) cells or anti-CD40 monoclonal antibody (mAb). When B cells in the spleen and peritoneal cavity were stimulated, they proliferated and produced immunoglobulin (Ig) in the presence of CD40L-CHO cells or anti-CD40 mAb alone. However, another signal delivered by IL-10 in addition to CD40L-CHO cells or anti-CD40 mAb was found to be necessary for thymic B cells to proliferate and secrete Ig. Other interleukins acting on B cells, such as IL-4, IL-5, and IL-6, had no effect on the activation of thymic B cells, which thus have unique characteristics not found in peripheral B cells. This report discusses the physiological significance of IL-10- and CD40-driven signals in the activation of thymic B cells.  相似文献   

17.
BACKGROUND: Failure of costimulatory molecule-deficient donor dendritic cells (DCs) to induce indefinite allograft acceptance may be a result of the 'late" up-regulation of these molecules on the DCs after interaction with host T cells. Ligation of CD40 on antigen-presenting cells by its cognate ligand CD40L is thought to induce expression of CD80 (B7-1) and CD86 (B7-2). We examined the influence of anti-CD40L monoclonal antibody (mAb) on the capacity of donor-derived DC progenitors to induce long-term allograft survival. METHODS: High purity DC progenitors were grown from B10 (H2b) mouse bone marrow in granulocyte-macrophage colony-stimulating factor and transforming growth factor beta1 (TGFbeta1). Mature DC were propagated in granulocyte-macrophage colony-stimulating factor and interleukin-4. Their phenotype was characterized by flow cytometric analysis and their function by mixed leukocyte reactivity. Anti-donor cytotoxic T lymphocyte activity in grafts and spleens of vascularized heart allograft recipients was also assessed. RESULTS: The TGFbeta3-cultured cells were (1) DEC 205-positive, MHC class II-positive, CD80dim, CD86dim, and CD40dim, (2) poor stimulators of naive allogeneic T-cell proliferation, and (3) able to prolong significantly B10 cardiac allograft survival in C3H (H2k) recipients when given (2 x 10[6] i.v.) 7 days before organ transplantation (median survival time [MST] 26 days vs. 12 days in controls, and 5 days in interleukin-4 DC-treated animals). Their allostimulatory activity was further diminished by addition of anti-CD40L mAb at the start of the mixed leukocyte cultures. Anti-CD40L mAb alone (250 microg/mouse, i.p.; day -7) did not prolong cardiac graft survival (MST 12 days). In contrast, TGFbeta-cultured DCs + anti-CD40L mAb extended graft survival to a MST of 77 days, and inhibited substantially the anti-donor cytotoxic T lymphocyte activity of graft-infiltrating cells and host spleen cells assessed 8 days after transplant. CONCLUSIONS: The CD40-CD40L pathway appears important in regulation of allogeneic DC-T-cell functional interaction in vivo; its blockade increases markedly the potential of costimulatory molecule-deficient DCs of donor origin to induce long-lasting allograft survival.  相似文献   

18.
Activation-induced cell death (AICD) occurs primarily in recently activated T cells after a second TCR triggering. Since a threshold in the activation status may be critical for AICD, it is likely that the CD3 ITAM, docking sites for tyrosine kinases, regulate AICD. A 'threshold model' for AICD was tested by using two targeted mutant mouse strains lacking either the zeta chain (CD3zeta-/-) or the ITAM of the zeta chain (CD3zeta-/-:Tgzetadelta67-150). Although the T cells from the CD3zeta-/- mice express extremely low levels of surface TCR, a subpopulation (approximately 18%) of activated T cells could be induced to express TCR/FcepsilonRI gamma by using a powerful polyclonal activation protocol. These activated TCR/FcRI gamma T cells were capable of undergoing AICD, but its induction required 10 times as much anti-CD3epsilon mAb as that required for AICD of wild-type T cells. Thus, the intensity of AICD correlated with the level of CD3 expression and was less efficient with activated, CD3zeta(-/-)-derived T cells. By contrast, AICD of T cells from the CD3zeta-/-:Tgzetadelta67-150 mice could be induced with low doses of anti-CD3epsilon mAb and the extent of AICD was comparable to T cells from wild-type mice. The AICD induced in T cells from CD3-/-, CD3zeta-/-:Tgzetadelta67-150 and normal controls was specifically inhibited by Fas-Ig fusion proteins. Our data support the 'threshold model' of AICD by demonstrating that AICD is controlled by the strength of T cell activation.  相似文献   

19.
p40 was previously described as a regulatory molecule capable of inhibiting both the natural and the CD16-mediated cytotoxicity of NK cells. In this study, we analyze the effect of p40 molecule engagement on the NK cell triggering induced by activating HLA class I-specific NK receptors (NKR) or on TCR alpha beta-mediated T cell activation. CD3-CD16+ NK cell clones expressing activating NKR (either CD94 or p50) were analyzed in a redirected killing assay using P815 target cells and appropriate mAb. A strong target cell lysis was detected in the presence of anti-NKR or anti-CD16 mAb alone. Addition of anti-p40 mAb resulted in a strong inhibition of both anti-NKR or anti-CD16 mAb-induced cytolysis. mAb specific for either CD45 or lymphocyte function associated antigen-1 did not exert any inhibitory effect in the same experimental system. Free intracellular calcium ([Ca2+]i) increase induced by mAb cross-linking of activating CD94 or p50 was inhibited by simultaneous engagement of p40 molecules, but not of other NK surface molecules including CD44 and CD56. In addition, cross-linking of p40 molecules strongly inhibited the CD94-induced tumor necrosis factor-alpha and IFN-gamma production. Analysis of TCR alpha beta or gamma delta T cell clones revealed that the engagement of p40 molecules, using specific mAb, induced some degree of inhibition only on anti-V beta (but not anti-V delta or anti-CD3) mAb-induced cytotoxicity. On the other hand, the p40 molecule engagement prevented T cell proliferation induced by either anti-V beta 8 or anti-V delta 2 mAb. A similar inhibitory effect was found on the IL-2-induced NK cell proliferation. Taken together, our present findings suggest that p40 may play a role in the regulation of NK and T lymphocyte activation and proliferation.  相似文献   

20.
The interaction between CD28 and its ligands, CD80 and CD86, is crucial for an optimal activation of antigen-specific T cells. However, the requirement of CD80 or CD86 co-stimulation in Th2 cell differentiation and activation is controversial. Freshly isolated murine CD4+ and CD8+ T cells were incubated with P815 transfectants expressing a similar level of either CD80 or CD86 in the presence of anti-CD3 mAb. Both CD80 and CD86 co-stimulated the proliferation of CD4+ and CD8+ T cells at comparable time-kinetics and magnitude, but CD86 alone was able to co-stimulate IL-4 and especially IL-10 production in CD4+ T cells. In typical Th2-dependent immune responses elicited by Nippostrongylus brasillensis infection, the anti-CD86 mAb treatment but not the anti-CD80 mAb treatment efficiently inhibited antigen-specific IgE and IgG1 production, which was accompanied with the reduced IL-4 production. Our results suggest that CD86 co-stimulation plays a dominant role not only in the primary activation of Th2 cells but also in the secondary interaction between antigen-primed Th2 cells and B cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号