首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
ABSTRACT:  Infrared (IR) heating offers several advantages over conventional heating in terms of heat transfer efficiency, compactness of equipment, and quality of the products. Roasting of sesame seeds degrades the lignan sesamolin to sesamol, which increases the oxidative stability of sesame oil synergistically with tocopherols. IR (near infrared, 1.1 to 1.3 μm, 6 kW power) roasting conditions were optimized for the conversion of sesamolin to sesamol. The resultant oil was evaluated for sesamol and tocopherol content as well as oxidative stability. The defatted flours were evaluated for their nutritional content and functionality. IR roasting of sesame seeds at 200 °C for 30 min increased the efficiency of conversion of sesamolin to sesamol (51% to 82%) compared to conventional heating. The γ-tocopherol content decreased by 17% and 25% in oils treated at 200 and 220 °C for 30 min, respectively. There were no significant differences in the tocopherol content and oxidative stability of the oil. Methionine and cysteine content of the flours remained unchanged due to roasting. The functional properties of defatted flours obtained from either IR roasted or conventionally roasted sesame seeds remained the same.
Practical Applications: Sesame oil is stable to oxidation compared to other vegetable oils. This stability can be attributed to the presence of tocopherols and the formation of sesamol, the thermal degradation product of sesamolin—a lignan present in sesame. Roasting of sesame seeds before oil extraction increases sesamol content which is a more potent antioxidant than the parent molecule. The conversion efficiency of sesamolin to sesamol is increased by 31% by infrared roasting of seeds compared to electric drum roasting. This can be used industrially to obtain roasted oil with greater oxidative stability.  相似文献   

2.
Cocoa bean carbohydrates: roasting-induced changes and polymer interactions   总被引:3,自引:0,他引:3  
Roasting induced change to carbohydrates and cell wall polysaccharides was investigated in three varieties of cocoa beans. The concentrations of glucose and fructose decreased after roasting but levels of the non-reducing sugars, sucrose, raffinose, stachyose and verbascose, were not markedly affected. Approximately 10% of the arabinose content of the polysaccharides was degraded but, overall, the pectic and hemicellulosic polymers remained intact after roasting. The degree of esterification and acetylation of the pectic polysaccharides were unaffected by roasting. Roasting did promote an interaction between polysaccharides, proteins, polyphenolics and Maillard products. This led to the formation of insoluble complexes which co-purified with, and augmented, the levels of cell wall material isolated from roasted compared to unroasted beans. The implications of the results are discussed in relation to the role that “Klason lignin” plays in the formation of these chemical amalgams during roasting.  相似文献   

3.
Jiesang  Chung  Yoosung  Lee  Eunok  Choe 《Journal of food science》2006,71(3):C222-C226
ABSTRACT: Effects of sesame oil addition to soybean oil during frying on the lipid oxidative stability and antioxidants contents of fried products during storage in the dark were studied. Flour dough pieces (2 cm × 2 cm × 0.1 cm) were fried at 160 °C for 1 min in sesame oil-added soybean oil. Concentrations of sesame oil in the frying oil were 0%, 10%, and 20% by volume. Fried products were put into a glass bottle, and the bottles were tightly sealed and stored at 60 °C in the dark for 18 d. Lipid oxidation of fried products was determined by fatty acid composition changes and conjugated dienoic acid (CDA) and p -anisidine (PA) values. Tocopherols and lignan compounds in the fried products were determined by high-performance liquid chromatography. Relative content of linolenic acid decreased, and CDA and PA values increased during storage of the fried products in the dark. Fatty acid composition change and CDA and PA values during storage were lower in the products fried in sesame oil-added soybean oil than in the products fried in soybean oil without sesame oil. The results clearly showed that addition of roasted sesame oil to soybean oil at 10% and 20% during frying decreased the lipid oxidation of fried products during storage in the dark for 18 d by extension of induction period and decrease in decomposition of oxidized lipids. Fried products contained 134 to 267 ppm tocopherols and 0 to 148 ppm lignans before storage; however, their contents decreased during storage in the dark. Lignan compounds were more stable than tocopherols, and the rate of tocopherols degradation was lower in the products fried in sesame oil-added soybean oil than in the products fried in soybean oil without sesame oil, which could be because of protection of tocopherols from degradation by lignan compounds.  相似文献   

4.
Sesame seeds were roasted at different temperatures (180–220 °C) using a domestic electric oven. Molecular species and fatty acid distributions of triacylglycerols (TAGs) isolated from total lipids in the sesame seeds were analysed by a combination of argentation thin‐layer chromatography (TLC) and gas–liquid chromatography. A modified argentation TLC procedure, developed to optimise the separation of the complex mixture of total TAGs, provided 11 different groups of TAGs, based on both the degree of unsaturation and the total length of fatty acid groups. Fatty acid methyl ester analysis was performed to determine the composition of each zone. Eleven molecular species of TAGs were still detected in the sesame seeds following roasting treatment. Dilinoleolein (33.7–35.8%), palmitoleolinolein (20.3–22.8%), dioleolinolein (15.0–15.4%) and trilinolein (8.8–10.7%) were the main components during roasting. However, roasting for 10 min at 220 °C caused a significant decrease (P < 0.05) not only in molecular species containing more than four double bonds, but also in the amount of diene and triene species present in TAGs (with a few exceptions). These results suggest that no significant changes in molecular species or fatty acid distribution of TAGs would occur within 25 min of roasting at 180 °C, ensuring that a good‐quality product would be attained. © 2000 Society of Chemical Industry  相似文献   

5.
Sesame paste (tahin) is produced by milling hulled, roasted, sesame seeds. In this study, a hot‐air roasting process for the production of sesame paste was optimised by response surface methodology (RSM) over a range of air temperatures (120–180 °C) for various times (30–60 min). The colour parameters (L, a and b values), browning index (BI), hardness, fracturability and moisture content of the seeds were used as response parameters to develop predictive models and optimise the roasting process. Increases in roasting temperature and time caused increases in the a and b values and in the BI. The hardness and fracturability of seeds also decreased with increasing roasting temperature and time. The quadratic and linear models developed by RSM adequately described the changes in the colour values and textural parameters, respectively. The result of RSM analysis showed that all colour parameters and textural parameters should be used to monitor the roasting of sesame seeds in a hot‐air roaster. To obtain the desired colour and texture, the optimum roasting range for production of sesame paste was determined as 155–170 °C for 40–60 min. Copyright © 2006 Society of Chemical Industry  相似文献   

6.
The composition and quality changes of sesame oils prepared at different roasting temperatures (180–260°C) from sesame seed were evaluated and compared with an unroasted oil sample. There were no apparent differences in characteristics, such as acid value, iodine value, saponification value and refractive index, of sesame oils prepared at a roasting temperature between 180 and 220°C. The colour units and total polar content of oils increased in relation to an increase in roasting temperature. The phospholipid content was reduced from 690 mg kg?1 in unroasted oil to 0 mg kg?1 in the oil prepared using a 260°C roasting temperature. The fatty acid content of the oil was reduced markedly, especially in oleic and linoleic acids, when the roasting temperature was over 220°C. The amounts of chlorophyll and sesamolin decreased with increasing roasting temperature. However, the highest level of sesamol and γ-tocopherol was found in oils prepared with a 200–220°C roasting temperature. The sesame oil prepared at a 200°C roasting temperature had the best flavour score when compared with the other samples.  相似文献   

7.
The quality characteristics and composition of sesame oils prepared at different roasting temperatures (160–250°C) from sesame seeds using a domestic electric oven were evaluated as compared to an unroasted oil sample: only minor increases (P<0·05) in characteristics, such as peroxide value, carbonyl value, anisidine value and thiobarbituric acid reactive substances, of sesame oils occurred in relation to increasing roasting temperature and time between 160 and 200°C, but colour units of oils increased markedly over a 220°C roasting temperature. Significant decreases (P<0·05) were observed in the amounts of triacylglycerols and phospholipids in the oils prepared using a 250°C roasting temperature. The amounts of γ-tocopherol and sesamin still remained over 80 and 90%, respectively, of the original levels after roasting at 250°C. In the oil prepared using a 250°C roasting temperature, sesamol was detected at 3370 mg per kg oil, but sesamolin was almost depleted after 25 min of roasting. Burning and bitter tastes were found in the oils prepared at roasting temperatures over 220°C. The results suggested that a high-quality product would be obtained by roasting for 25 min at 160 or 180°C, 15 min at 200°C and 5 min at 220°C when compared with the other samples. © 1997 SCI.  相似文献   

8.
The potential of a rapid spectral method, based on front-face fluorescence, to monitor lipid neoformed compounds (NFC) during processing of nuts and sesame seeds was investigated. Fluorescence fingerprints were obtained from front-face fluorescence acquisition directly on crushed nuts and sesame seed samples obtained at different stages of processing. Fluorescence was very sensitive to physicochemical changes induced by the heat process, namely roasting. Parallel factor (PARAFAC) analysis of the fluorescence landscapes revealed four main fluorescence profiles in the nuts, and five in the sesame seeds. These were associated with peptidic tryptophan, tocopherols and process derived products. Various regression models between fluorescence spectra and NFC appearing during the process, carboxymethyllysine (CML) and trans fatty acids (tFA) showed good correlations (R > 0.89) and satisfactory prediction errors (RMSECV < 1.67). When applied to indicators of lipid peroxidation, good regression models were also obtained allowing prediction of the pAV (p-anisidine value) and TBARs (thiobarbituric acid reactive substances): R = 0.73 and 0.96 in nuts and sesame seeds, respectively, with prediction errors lower than 0.78. This study demonstrates the interest of front-face fluorescence as a promising tool for quality control of nuts and seeds roasting.  相似文献   

9.
Headspace volatiles of sesame oil (SO) from sesame seeds roasted at 9 different conditions were analyzed by a combination of solid phase microextraction (SPME)-gas chromatography/mass spectrometry (GC/MS), electronic nose/metal oxide sensors (MOS), and electronic nose/MS. As roasting temperature increased from 213 to 247 °C, total headspace volatiles and pyrazines increased significantly (P < 0.05). Pyrazines were major volatiles in SO and furans, thiazoles, aldehydes, and alcohols were also detected. Roasting temperature was more discrimination factor than roasting time for the volatiles in SO through the principal component analysis (PCA) of SPME-GC/MS, electronic nose/MOS, and electronic nose/MS. Electronic nose/MS showed that ion fragment 52, 76, 53, and 51 amu played important roles in discriminating volatiles in SO from roasted sesame seeds, which are the major ion fragments from pyrazines, furans, and furfurals. SO roasted at 213, 230, and 247 °C were clearly differentiated from each other on the base of volatile distribution by SPME-GC/MS, electronic nose/MOS, and electronic nose/MS analyses. Practical Application: The results of this study are ready to apply for the discriminating samples using a combinational analysis of volatiles. Not only vegetable oils prepared from roasting process but also any food sample possessing volatiles could be targets for the SPME-GC/MS and electronic nose assays. Contents and types of pyrazines in sesame seed oil could be used as markers to track down the degree of roasting and oxidation during oil preparation.  相似文献   

10.
J. Chung    J. Lee    E. Choe 《Journal of food science》2004,69(7):574-578
ABSTRACT: Effects of roasted sesame seed oil on the oxidative stability of soybean oil during frying of flour dough at 160 °C were studied by determining fatty acid composition and conjugated dienoic acid (CDA), p -anisidine (PA), and free fatty acid (FFA) values. Concentration of sesame oil in frying oil was 0%, 10%, 20%, or 30% (v/v). Tocopherols and lignan compounds in the frying oil were also determined by high-performance liquid chromatography. As the number of fryings performed by the oil increased, linolenic acid content in frying oil decreased, and the decreasing rate was lower in frying oil containing sesame oil than in the oil containing no sesame oil. CDA and FFA values of frying oil increased during frying and their relative values to the initial value were lower in frying oil containing sesame oil than in the oil containing no sesame oil. This indicates that the addition of sesame oil improved thermooxidative stability of frying oil, possibly due to the presence of lignan compounds in sesame oil. Tocopherols and lignan compounds in frying oil decreased during frying. As the amount of sesame oil in frying oil increased, degradation of tocopherols increased and lignan compounds degradation decreased. Tocopherols were suggested to protect lignan compounds in sesame oil from decomposition during frying.  相似文献   

11.
This study was to investigate the effect of conditioning and heat-treatments on the yield and quality of sesame oil. Confocal laser scanning microscopy (CLSM) and transmission electron microscopy (TEM) were used to explore the microstructure of sesame cotyledon cells. It was found that cell microstructure and oil body membrane of sesame seeds underwent high-pressure steaming pretreatment (HPS), roasting pretreatment (RP), moisture-conditioning plus roasting pretreatment (MRP) was all damaged. All these thermal treatments, especially MRP, contributing to increased oil yield from 45.85 (untreated) to 91.69%. Furthermore, RP or MRP yielded a higher content of sesamol than untreated sesame, whereas sesamin and seasamolin content, fatty acid composition, acid value and peroxide value showed no significant changes (> 0.05) between heat-treatments. MRP increased the type and content of volatile compounds, which was beneficial to the strong nut-like aroma. Additionally, MRP had a positive effect on oxidative oil stability (induction time of 10.80 h) with respect to untreated oil (7.82 h).  相似文献   

12.
本文主要研究焙炒时间对芝麻油挥发性风味成分及芝麻中氨基酸含量(以芝麻脱脂粕中氨基酸含量为依据)的影响。经过不同时间焙炒的芝麻,用水代法提油,然后采用顶空固相微萃取(HS-SPME)结合GC/MS技术,检测芝麻油中的挥发性风味成分。随着焙炒时间的延长,吡嗪类、吡咯类、吡啶和嘧啶类、含硫类、呋喃类、酚类物质的相对含量逐渐增多,醛类、醇类、烃类和环氧烃类等物质的含量逐渐减少。对芝麻脱脂粕中18种氨基酸含量的检测数据显示,随着焙炒程度加深,氨基酸含量呈总体下降趋势,其中精氨酸、丝氨酸、赖氨酸和胱氨酸的含量减少明显,这4种氨基酸对芝麻油香味的形成可能起到了重要的作用。  相似文献   

13.
Contamination sources of polycyclic aromatic hydrocarbons (PAHs) in the raw material, oil production and storage processes of wood-pressed rapeseed oil were investigated in this study. The results showed that benzo[a]pyrene (BaP) and PAH4 (sum of BaP, benzo[a]fluoranthene, benzo[b]fluoranthene and chrysene) were unevenly distributed in the kernel (0.56–0.98 and 2.84–8.64 μg/kg, respectively) and hull (1.53–3.17 and 13.49–22.31 μg/kg, respectively) of the rapeseed raw materials. The contents of BaP and PAH4 continuously increased during the process of wood-pressed rapeseed oil, ranging from 2.21 to 10.93 and 9.36 to 40.03 μg/kg, thus demonstrating that a wide range of pollution sources of PAHs existed for the test wood-pressed rapeseed oils. The initial temperature and time of roasting should be controlled at <210°C and <60 min, due to the generation of PAHs in rapeseed by over-roasting. In addition, contact tools and substance such as lubricating oil (from the mill), heat-transfer oil (from roasting machine), rubber gaskets and straws should be properly screened. The BaP and PAH4 of rapeseed placed in the roasting area increased from 0.5 to 2.24 and from 2.08 to 9.03 μg/kg, respectively. Therefore, roasting fume control and treatment systems are necessary and the roasting section should be strictly isolated from the other stages. Storage can slightly lower the PAHs amounts in the rapeseed oil, which made the contents of BaP and PAH4 decrease from 27.00 to 24.70 and from 138.63 to 117.58 μg/kg, respectively. Quality control measures of PAHs in wood-pressed rapeseed oil were proposed and implemented, and the final oil products’ BaP and PAH4 were kept below 2 and 10 μg/kg, respectively, which meets the European Commission Regulation No. 835/2011.  相似文献   

14.
S.-M. Jeong    S.-Y. Kim    D.-R. Kim    K.C. Nam    D.U. Ahn    S.-C. Lee 《Journal of food science》2004,69(5):C377-C381
ABSTRACT: Antioxidant activities of defatted sesame meal extract increased as the roasting temperature of sesame seed increased, but the maximum antioxidant activity was achieved when the seeds were roasted at 200°C for 60 min. Roasting sesame seeds at 200°C for 60 min significantly increased the total phenolic content, radical scavenging activity (RSA), reducing powers, and antioxidant activity of sesame meal extract; and several low-molecular-weight phenolic compounds such as 2-methoxyphenol, 4-methoxy-3-methylthio-phenol, 5-amino-3-oxo-4-hexenoic acid, 3,4-methylenedioxyphenol (sesamol), 3-hydroxy benzoic acid, 4-hydroxy benzoic acid, vanillic acid, filicinic acid, and 3,4-dimethoxy phenol were newly formed in the sesame meal after roasting sesame seeds at 200°C for 60 min. These results indicate that antioxidant activity of defatted sesame meal extracts was significantly affected by roasting temperature and time of sesame seeds.  相似文献   

15.
A simple roasting model using a mineral oil bath was set up to study the effects of coffee proteins on the formation of coffee volatiles during roasting. Green coffee powder was separated into four fractions, and the highest concentration of volatile compounds was observed in the roasted sample of the water extract fraction. Sugar degradation products were the dominant compounds. The addition of coffee proteins into the nonprotein water extract fraction catalysed sugar degradation and enhanced the production of selected volatiles. Higher amounts of coffee protein correlated with the concentration of pyrazines. Coffee protein also increased sucrose degradation in the roasting of sucrose with coffee protein. However, the results from colour measurements indicated that a greater amount of protein produced a lighter colour. These results demonstrated the important contribution of coffee proteins in the formation of coffee volatiles and colour.  相似文献   

16.
为探究不同烘焙工艺及杏仁中杏仁种皮的存在对杏仁油理化品质的影响,将带种皮杏仁和去种皮杏仁在130、160、190 ℃烘箱里,分别烘烤5、10、15、20 min,压榨得杏仁油,测定两种杏仁油的酸值、过氧化值、碘值、皂化值、色泽和脂肪酸含量。结果表明:低温130 ℃(5~10 min)、160 ℃(5、10 min)条件下烘焙制备的杏仁油酸值和过氧化值降低,其他理化指标变化不明显,油脂品质提高。随着烘焙温度继续升高,S-AKO(带种皮杏仁油)和N-AKO(去种皮杏仁油)酸值分别上升16.05%和26.76%,N-AKO过氧化值上升18.46%,S-AKO和N-AKO的碘值降低6.56%和10.74%,不饱和脂肪酸含量降低0.93%和0.76%,油脂色泽加深,高温长时间烘焙制备的油脂品质下降。两种杏仁油理化指标对比,S-AKO的品质更佳,杏仁种皮的存在对杏仁油产生有益的影响。此研究结果为加热预处理油料种子制备油脂,保证油脂品质提供理论依据和技术支持。  相似文献   

17.
Production of sesame milk is one of the methods for increasing consumption of sesame as an excellent nutritional resource. The aim of this study was to examine the effects of sodium bicarbonate concentration in soaking water (0, 0.5 and 1 g/100 mL NaHCO3), roasting temperature (0 and 145 °C) and blanching time (0, 15 and 30 min) on physicochemical and sensory properties of sesame milk. Changes promoted by these processing conditions were also evaluated via color analysis and sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). The processing parameters mainly affected pH, total solids, protein, fat, ash, lipoxygenase activity, stability, specific gravity, viscosity, color features and sensory properties. Sensory evaluation revealed that overall acceptability was higher in all treatments than the control. SDS-PAGE analysis showed that 7S globulins decreased by roasting and soaking while 11S globulins of sesame milk proteins increased by roasting. The optimum processing conditions were found to be soaking in water containing 0.5 g/100 mL NaHCO3, blanching for 15 min and without any roasting when desirability function method was applied.  相似文献   

18.
Liu X  Jin Q  Liu Y  Huang J  Wang X  Mao W  Wang S 《Journal of food science》2011,76(3):C404-C412
The changes in volatile compounds composition of peanut oil during the roasting process of aromatic roasted peanut oil (ARPO) production were investigated. The analyses were performed by gas chromatography-mass spectrometry combined with headspace solid phase microextraction (HS-SPME/GC-MS). Among the volatiles identified in ARPO, the N-heterocyclic chemical class possessed the highest relative percentage area (RPA) 61.68%, followed by O-heterocyclic group with an RPA of 24.57%. Twenty pyrazines were considered to be the key contributors to the intense nutty/roasty flavor typical of ARPO. Compounds that increased significantly in concentration during the roasting process were mainly Maillard reaction products, as well as compounds derived from Strecker degradation and lipid peroxidation. The results clearly showed that the roasting process was necessary to obtain the typical nutty/roasty aroma of ARPO. PRACTICAL APPLICATION: ARPO is the traditional edible oil in China that possesses a characteristic strong nutty and roasty flavor that distinguishes it from other edible vegetable oils. During the production, the roasting process is the crucial factor for the formation of the typical roasted peanut aroma that plays an important role in sensory quality of peanut oil. In our investigation, not only the volatile changes of peanut oil pressed from relevant peanut seeds roasted at different roasting time were determined, but also the contributions of identified volatiles on the typical nutty/roasty flavor of ARPO were discussed. Our work clearly demonstrated the significant effect of roasting process on the typical flavor formation of ARPO. The results are valuable as scientific guidance for the roasting process that better satisfy demands of the peanut oil industries for better flavor.  相似文献   

19.
A method, based on HPLC, described in our previous publication for the analysis of chlorogenic acids in instant coffee, was used in a study of the effect of roasting on the chlorogenic acid composition of Arabica and Robusta coffee. The degradation of seven chlorogenic acids was followed during roasting. Losses of about 60% were observed when mild roasting conditions were used and almost 100% after severe roasting. Considerable differences in degradation rates of individual isomers were observed so that the composition of chlorogenic acids changed throughout the roasting process. Thus the degree of roasting may have a direct influence on the final product flavour as the individual isomers have different sensory properties.  相似文献   

20.
浒苔多糖作为浒苔的主要功能成分,具有多种生物活性,如免疫调节、抗氧化、抗肿瘤、降血脂等。但是由于其分子量较大,浒苔多糖具有溶解性差、生物利用率低等缺陷,这极大地限制了浒苔多糖资源的高值化开发和利用。浒苔多糖降解后得到的低分子量产物,在保持了多糖的多种生物活性的基础上,大大提升了其溶解性、生物利用度等,因而浒苔多糖降解产物的制备与活性研究已成为海洋生物资源开发研究领域的热点。目前,浒苔寡糖的制备主要是通过对浒苔多糖的降解实现的,主要方法包括化学降解法、物理降解法和酶降解法等。该研究综述了浒苔多糖的化学组成、结构、提取和纯化方法,并对浒苔多糖降解产物的制备方法和活性等进展进行了总结和展望,以期为浒苔多糖及其降解产物的研究提供理论基础,为推动海洋藻类多糖资源的高值化利用和开发提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号