首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Behavioral nociceptive responses evoked by relatively high rates of noxious radiant skin heating appear to be mediated by A delta nociceptor activation, whereas responses evoked by low rates of skin heating appear to be mediated by the activation of C-fiber nociceptors. This hypothesis was confirmed by the results of single unit recordings of A delta and C nociceptive afferent fibers isolated from the saphenous nerves of pentobarbital anesthetized rats. Heating the hind paw skin of the rat at a relatively high rate of 6.5 degrees C/sec activated A delta units within 2 sec after the onset of the stimulus. This response latency is similar to the 2.5 sec latency of the foot withdrawal response to a similar stimulus. In contrast, C-fibers were only slightly activated at a longer latency of 5-6 sec. Conversely, heating the hind paw skin at a relatively low rate of 0.9 degrees C/sec activated C-fibers, but evoked only a few action potentials in A delta nociceptors. C-fibers began firing at a rate less than 1 Hz between 8 and 10 sec after the onset of heating and fired at a mean rate of 1.5 Hz between 10 and 12 sec, which corresponds to the latency of the foot withdrawal response. Topical application of capsaicin to the hind paw skin decreased the latency of C-fiber responses from control values of 8-12 sec to approximately 4 sec after topical capsaicin treatment. The mean latency of the foot withdrawal response to skin heating at the low rate is also reduced from control values of 12-14 sec to 4-5 sec after capsaicin treatment. In contrast, capsaicin treatment did not significantly affect the responses of A delta nociceptors. These results support the conclusion that nociceptive foot withdrawal responses to a low rate of skin heating are mediated predominantly by the activation of C-fiber nociceptors. These results provide direct evidence that, under the conditions of these experiments, nociceptive foot withdrawal responses evoked by high rates of skin heating are primarily mediated by A delta nociceptors, and foot withdrawal responses evoked by low rates of skin heating are primarily mediated by C-fiber nociceptors.  相似文献   

2.
C-Fiber mechanoheat (C-MH) nociceptors from the saphenous nerve were studied, in control rats and in rats that underwent surgical sympathectomy. Intradermal injection, alone, of either norepinephrine (NE) or the calcium ionophore, A23187, did not affect mechanical threshold. The combination of A23187 and NE, however, significantly decreased mechanical threshold. In the presence of the alpha 2-adrenergic antagonist, yohimbine, or the cyclooxygenase inhibitor, indomethacin, C-MHs were not sensitized by the combination of NE + A23187. One week after surgical sympathectomy, the number of C-MHs sensitized by NE + A23187 was significantly reduced. In summary, NE appears to sensitize nociceptors indirectly. These data are compatible with the suggestion that a sympathetic postganglionic neuron-dependent release of prostaglandins mediates the sensitization. NE appears to act at an alpha 2-adrenergic receptor, only in the presence of an increased intracellular Ca2+.  相似文献   

3.
Endothelin-1 (Et-1) is a 21-amino acid peptide primarily synthesized by endothelial cells. It was originally classified as a potent vasoconstrictor but recent evidence suggests that it also possesses a wide variety of non-vascular actions. It stimulates fibroblast and smooth muscle cell proliferation and it has been shown to stimulate fibroblast collagen metabolism. However, studies on its ability to regulate collagen production remain incomplete, and its effect on post-translational processing of procollagen has not been studied. This report details the effect of Et-1 on the rates of procollagen synthesis and degradation in two fibroblast cell lines; human foetal lung (HFL-1) and whole foetal rat fibroblasts (Rat 2). Fibroblast cultures were incubated for 24 hr in the presence or absence of Et-1 before procollagen metabolism was determined by measuring hydroxyproline. Non-collagen metabolism was also determined in these cultures from the uptake of tritiated phenylalanine. Et-1 stimulated procollagen synthesis in HFL-1 fibroblasts and reduced synthesis in Rat 2 cells. The response was dose dependent with the greatest effect at 1.10(-6) M Et-1 for both cell types (155 +/- 6% of control (mean +/- SD, n = 6, P < 0.01) and 61 +/- 4% of control (n = 4, P < 0.01) for HFL-1 and Rat 2 fibroblasts, respectively). Non-collagen protein synthesis was increased to 148 +/- 5% of control (P < 0.05) at 1.10(-6) M Et-1. Non-collagen protein synthesis remained unaffected in the HFL-1 fibroblast cultures. Procollagen degradation, expressed as a proportion of total procollagen synthesis, was decreased in HFL-1 fibroblasts (control, 29 +/- 2%; Et-1, 1.10(-6) M; 21 +/- 2%; P < 0.01), and increased in Rat 2 fibroblasts (control 42 +/- 1%; Et-1, 1.10(-6) M; 49 +/- 1%; P < 0.01). Blocking of the EtA receptor for Et-1, using the receptor antagonist-BQ123, abolished the effect of Et-1 on procollagen metabolism in both cell types. These results suggest that different populations of fibroblasts exhibit heterogeneous responses to Et-1. It is concluded that Et-1 may play an important role in the extent and distribution of fibrosis seen in diseases associated with the overproduction of Et-1.  相似文献   

4.
1. Perfusion of the receptive field (RF) of C- or A delta-fiber nociceptors with nerve growth factor (NGF) in an in vitro preparation of the rat saphenous nerve with functionally attached skin induced a significant decrease in heat threshold without changing mechanical or cold sensitivity. 2. NGF-induced thermal sensitization was absent after saline perfusion and in skin taken from mast-cell depleted animals, hence confirming a role for mast cells in NGF-induced thermal hyperalgesia. 3. Neurotrophin-5 (NT-5) also induced a small but significant reduction in heat threshold without affecting mechanical sensitivity. It is speculated that NT-5 exerts its action either directly on the trkA receptor, as with NGF or alternatively through trkB receptors located on sympathetic efferents or on small diameter afferents.  相似文献   

5.
6.
Ten young men underwent several tests before and after a training program: a bicycle ergometer test and 60 min of moderate exercise performed at a temperate 24 degrees C; the same work load performed in heat (40.0 degrees C DB, 30.4 degrees C WB) for 3 h; and cold (10 degrees C) exposure for 60 min. Training consisted of 13 1-h sessions of hard, strenuous, and exhaustive work performed in temperate conditions four times a week. Training resulted in substantial decreases in heart rate and rectal temperature responses to exercise in temperate, minor increases in hot, and no significant changes in cold conditions. Subjects who showed good responses to heat, also showed good responses at 24 degrees C, and poor compensatory responses to cold, which were indicated by relatively low heat production and rectal temperature values, and relatively high body heat loss and extremities temperature values. Subjects who showed poor heat tolerance also showed poor responses in temperate and good compensatory responses in cold conditions. Positive correlation coefficients were found between rectal temperatures in the three environments, and between heart rate and sweat rate responses in temperate and hot conditions. The results indicated that moderately severe training causes minor tolerance improvements in heat and no changes in cold, and that responses in temperate, cold, and hot environments are interdependent.  相似文献   

7.
The peripheral mechanism of hyperalgesia is considered to be the result of nociceptor sensitization. As possible agents causing nociceptor sensitization, bradykinin, histamine, prostaglandin (PG)s, protons and nerve growth factor are evaluated with respect to their release into the injured tissue, their sensitizing potencies. Whether blocking these agents suppresses sensitization was also evaluated. In addition, the intracellular mechanisms by which bradykinin, histamine and PGs cause sensitization are reviewed.  相似文献   

8.
Responses evoked in anaesthetized or decerebrate cats by stimulation of afferents supplying the face, mouth, pharynx, larynx, tooth pulp and jaw muscles were recorded from single neurones located in the trigeminal (V) main sensory nucleus, V nucleus oralis, and adjacent regions. Many cells (both V-thalamic relay and non-relay with localized V mechanoreceptive cutaneous fields could be activated by stimulation of a number of these afferents. A particularly prominent short-latency (often monosynaptic) input was noted from the canine tooth pulp, stimulation of which is generally considered to elicit only responses of pain in man. Control experiments showed that pulp-evoked responses were not the result of stimulus spread to tissues outside the pulp. The interaction of these various inputs to neurones at this level of the V brain stem complex typically resulted in a prolonged period of inhibition that was sometimes preceded by a short-lasting facilitatory phase. This inhibitory effect was also apparent in neurones located outside the complex, although a late facilitatory phase was frequently also noted. Our findings indicate a significant nociceptive input to V main sensory-oralis neurones, a proportion of which relay directly to the ventrobasal thalamus. The interactions described may be involved in perceptual and reflex aspects of responses to noxious and innocuous V stimuli.  相似文献   

9.
10.
1. The responses of feline cutaneous nociceptors were examined in vivo by systematically manipulating the intensive and spatial dimensions of mechanical stimulation. A computer-controlled motor was used to apply prescribed forces (5-90 g) to a nociceptor's receptive field, with flat-tipped, cylindrical probes of various sizes (contact areas: 0.1-5.0 mm2). The stimulating device and protocols were similar to those previously used to evaluate human perception, thus allowing for comparisons of the two data sets. 2. With a ramp-and-hold stimulus of controlled force, most nociceptors showed a slowly adapting (SA) response throughout the stimulus. In this way, nociceptors resembled low-threshold SA mechanoreceptors. However, in contrast to SA mechanoreceptors, nociceptors failed to exhibit an onset burst of activity associated with the stimulus ramp. Nineteen percent (6 of 31) of the nociceptors often showed the opposite trend during the stimulus, e.g., a gradually increasing firing rate. Most of these nociceptors (5 of 6) had particularly high mechanical thresholds. 3. With 30 stimuli repeated at short intervals (6-8 s), response rates tended to decrease across trials. This phenomenon was most evident with more intense stimuli. When two series of stimuli were separated by 4-5 min, there was no apparent trend of reduced responsiveness between series. 4. Overall, nociceptors responded in an orderly way to variations in force and probe size. For a given probe size, larger forces produced greater responses; for a given force, smaller probes produced greater responses. The relationship between probe size and force was best described as an even tradeoff between force and a linear dimension of the probe (i.e., probe perimeter), rather than the area of the probe. Thus a given pressure (force/area) did not evoke the same response from nociceptors as probe size was varied. 5. There were two significant differences in the mechanical responsiveness between A fiber and C fiber nociceptors. First, for a given set of stimuli, A fiber nociceptors exhibited a greater response rate than the C fiber nociceptors. Second, the A fiber nociceptors exhibited a greater differential response related to probe size than the C fiber nociceptors. On the basis of these two features, the A fiber nociceptors' response profiles showed a closer parallel with previously reported human pain thresholds than the C fiber nociceptors did. 6. When the nociceptors were subdivided as to their mechanical threshold, those with lower thresholds [mechanically sensitive afferents (MSAs)] showed a response saturation with the more intense stimuli. On average, the stimulus levels at which saturation occurred were close to human pain threshold. Those nociceptors with higher thresholds [mechanically insensitive afferents (MIAs)] did not show such saturation. Thus only the MIAs appeared to have the capacity to unambiguously encode mechanical stimulus intensities above pain threshold. The MSAs, on the other hand, exhibited their greatest dynamic response range near the threshold for nonpainful sharpness. Thus the group of afferents commonly defined as nociceptors exhibit a heterogeneity of mechanical response properties, which may serve functionally different roles for perception.  相似文献   

11.
The technique of intraneural microstimulation (INMS) combined with microneurography was used to excite and to record impulse activity in identified afferent peroneal nerve fibers from skeletal muscle of human volunteers. Microelectrode position was minutely adjusted within the impaled nerve fascicle until a reproducible sensation of deep pain projected to the limb was obtained during INMS. During INMS trains of 5-10 s in duration and at threshold for sensation, volunteers perceived a well defined area of deep pain projected to muscle. Psychophysical judgements of the magnitude of pain increased with increasing rates of INMS between 5 and 25 Hz. Also, the area of the painful projected field (PF) evoked during trains of INMS of various duration but constant intensity and rate typically expanded with duration of INMS. The intraneural microelectrode was alternatively used to record neural activity originating from primary muscle afferents. Eight slowly adapting units with moderate to high mechanical threshold were identified by applying pressure within or adjacent to the painful PF. Conduction velocities ranged from 0.9 to 6.0 m/s, and fibers were classed as Group III or Group IV. Capsaicin (0.01%) injected into the RF of two slowly conducting muscle afferents (one Group III and one Group IV) produced spontaneous discharge of each fiber and caused intense cramping pain, suggesting that the units recorded were nociceptive. Our results endorse the concept that the primary sensory apparatus that encodes the sensation of cramping muscle pain in humans is served by mechanical nociceptors with slowly conducting nerve fibers. Results also reveal that muscle pain can be precisely localized, although the human cortical function of locognosia for muscle pain becomes blunted as a function of duration of the stimulus.  相似文献   

12.
Measured detection threshold, pain threshold, and pain tolerance for electrical stimulation in 20 healthy male volunteer medical students, using the psychophysical method of limits. The ascending rate of stimulation was held constant, but 5 different descending rates were employed. The descending pain threshold decreased significantly with increases in the descending speed of stimulation, but all other response parameters remained constant. It is proposed that several factors, including adaptation to pain and emotional reactivity associated with relief of pain, caused these results. Simple reaction time was excluded as a significant variable. It is suggested that descending pain parameters require more systematic study, especially since the relief of suffering may be more closely related to clinical pain than experimentally-induced ascending pain parameters. (21 ref.) (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

13.
BACKGROUND: Suppression of hypertensive response to noxious stimulation by volatile anesthetics may be a result of suppression of the stimulation-induced norepinephrine response or that of the cardiovascular response to catecholamines, or both. The suppression of the cardiovascular response is established, but that of norepinephrine response has not been confirmed. The authors hypothesized that the suppression of cardiovascular response but not that of norepinephrine response plays a major role in suppressing the noxious stimulation-induced hypertensive response by volatile anesthetics. METHODS: Forty healthy donors for living-related liver transplantation were allocated to four groups: receiving 1.2% (end-tidal) isoflurane in oxygen and nitrogen, 2.0% isoflurane, 1.7% sevoflurane, or 2.8% sevoflurane. The intraoperative plasma norepinephrine and epinephrine concentrations, arterial blood pressure and pulse rate were measured for the first 15 min of surgery and were compared with the preoperative values. RESULTS: Norepinephrine and epinephrine concentrations both increased intraoperatively in all four groups. The values of maximum increase and area under the concentration-versus-time curve of norepinephrine were greater in the high dose groups of both anesthetics. The intraoperative blood pressure did not differ by different doses of anesthetics, and the degree of increase of blood pressure was not proportional to the plasma catecholamine concentrations. CONCLUSION: The effects of isoflurane and sevoflurane on the surgical noxious stimulation-induced norepinephrine response were inversely proportional to the dose. The suppression of noxious stimulation-induced blood pressure response by anesthetics that were studied may be the result of suppression of the responses of vascular smooth muscle and myocardium to catecholamines.  相似文献   

14.
The rat foot withdrawal response to noxious radiant heat has been used as a model of nociception that is particularly useful for measurements of unilateral changes in nociceptive responses. The purpose of these studies was to characterize the foot withdrawal response to graded rates of noxious skin heating. Response latencies and both surface and subsurface temperatures produced by 6 different intensities of radiant heat were measured to determine whether response latency is an appropriate measure of nociceptive threshold. With constant intensity heating, the temperature of the skin surface increased as logarithmic function of time, while subsurface temperature increased linearly with time. In contrast, a heating function that linearly increased the temperature at the skin surface increased the subsurface temperature as an exponential function of time. These results and published reports of nociceptive afferent recordings which used similar skin heating parameters, indicate that nociceptive foot withdrawal responses occur at about the same skin temperature as the activation of nociceptors. These results also indicate that since constant intensity heating produces linear increases in the subsurface temperature, then response latency can be used as an accurate measure of changes in nociceptive threshold produced by drug treatments. These observations lead to the conclusion that the foot withdrawal response latency is a valid and useful measure of nociceptive threshold in rodents.  相似文献   

15.
Exposure to sulfur dioxide or sulfite aerosols induce inflammatory reactions in the respiratory tract characterized by an influx of neutrophils into the airways. To determine direct intracellular effects of sulfite on human neutrophils, these cells were evaluated ultrastructurally by electron microscopy and analyzed for their extracellular and intracellular respiratory burst activity after incubation with sulfite (0.01-10 mM) in vitro. The respiratory burst was quantitated by measuring both the extracellular release of superoxide anions (O2-) by superoxide dismutase-inhibitable lucigenin-dependent chemiluminescence (CL) and the intracellular generation of hydrogen peroxide (H2O2) by flow cytometry using the reagent dichlorofluorescein diacetate. The addition of sulfite in concentrations of 0.01-1 mM resulted in sixfold increases in CL of resting neutrophils. Neutrophils stimulated with zymosan, phorbol myristate acetate (PMA), or N-formyl-methionine-leucine-phenylalanine further increased CL when sulfite was added. Higher sulfite concentrations (2-10 mM) decreased CL of resting, zymosan-stimulated, and PMA-stimulated cells. When sulfate was added, no changes in CL of resting and zymosan-stimulated neutrophils were seen, indicating that the effect is specific for sulfite. The intracellular generation of H2O2 in resting and PMA-stimulated neutrophils incubated with sulfite (0.1-2 mM) was increased twofold. These findings suggest that sulfite in low concentrations stimulates neutrophils by activating the respiratory burst to produce O2- and H2O2. Ultrastructural studies confirm the stimulating effect of sulfite on neutrophils with sulfite-treated cells exhibiting increased ruffled surface membranes, degranulation changes, and vesiculation similar to those seen in PMA-stimulated cells.  相似文献   

16.
对ML42CrMo、SWRCH22A、SWRCH6A等冷墩钢的冷墩开裂试样进行金相检验和电子探针分析。结果表明,材料的表面缺陷、内部聚集分布的夹杂物、较严重的成分偏析或组织不正常等都可以成为冷墩开裂的原因。  相似文献   

17.
Positron emission tomography studies have provided evidence for the involvement of the thalamus and cortex in pain and temperature perception. However, the involvement of these structures in pain and temperature perception of individual subjects has not been studied in detail with high spatial resolution imaging. As a first step toward this goal, we have used functional magnetic resonance imaging (fMRI) to locate discrete regions of the thalamus, insula, and second somatosensory cortex (S2) modulated during innocuous and noxious thermal stimulation. Results were compared with those obtained during tactile stimulation of the palm. High resolution functional images were acquired on a 1.5 T echospeed GE MR system with an in-plane resolution of 1.7 mm. A modified peltier-type thermal stimulator was used to deliver innocuous cool and warm and noxious cold and hot stimuli for 40-60 s to the thenar eminence of normal male and female volunteers. Experimental paradigms consisted of four repetitions of interleaved control and task stimuli. A pixel by pixel statistical analysis of images obtained during each task versus control (e.g., noxious heat vs. warm, warm vs. neutral temperature, etc.) was used to determine task-related activations. Painful thermal stimuli activated discrete regions within the lateral and medial thalamus, and insula, predominantly in the anterior insula in most subjects, and the contralateral S2 in 50% of subjects. The innocuous thermal stimuli did not activate the S2 in any of the subjects but activated the thalamus and posterior insula in 50% of subjects. By comparison, innocuous tactile stimulation consistently activated S2 bilaterally and the contralateral lateral thalamus. These data also demonstrate that noxious thermal and innocuous tactile-related activations overlap in S2. The data also suggest that innocuous and noxious-related activations may overlap within the thalamus but may be located in different regions of the insula. Therefore, we provide support for a role of the anterior insula, S2, and thalamus in the perception of pain; whereas the posterior insula appears to be involved in tactile and innocuous temperature perception. These data demonstrate the feasibility of using fMRI for studies of pain, temperature, and mechanical stimuli in individual subjects, even in small regions such as thalamic nuclei. However, the intersubject variability should be considered in future single subject imaging studies and studies that rely on averaged group responses.  相似文献   

18.
19.
20.
Review of Alluvial-channel Responses to River Ice   总被引:1,自引:0,他引:1  
The extent to which alluvial channels respond to ice-cover formation, presence, and breakup is not well understood. Some responses are well known and observed, such as increased flow stage or localized scour beneath the toe of an ice jam. Other responses are known in concept, such as altered bedform geometry, but are not well documented. Some potential responses are barely recognized, such as channel-thalweg adjustment. Many responses are temporal, such as the channel readjusting itself once ice is gone. A few responses may have a more enduring impact, such as a meander-loop cutoff. Most responses have not been investigated rigorously. The responses affect the full gamut of relationships between flow discharge and stage, macroturbulence structures, sediment-transport and mixing processes, and alluvial-channel stability. Of importance are the relative scales of length and time associated with ice-cover formation, presence and breakup, and a channel’s facility to respond to ice. This paper reviews alluvial-channel responses to ice formation, and raises practical engineering issues stemming from them.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号