首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 24 毫秒
1.
We have used site-directed and in-frame deletion mutationalanalysis in order to explore the structural features of theIL–6 portion of the diphtheria toxin-related interleukin–6(IL–6) fusion toxin DAB389-IL–6 that are essentialfor receptorbinding and subsequent inhibition of protein synthesisin target cells. Deletion of the first 14 amino acids of theIL–6 component of the fusion toxin did not alter eitherreceptor binding affinity or cytotoxk potency. In contrast,both receptor binding and cytotoxic activity were abolishedwhen the C–terminal 30 amino acids of the fusion toxinwere deleted. In addition, we explored the relative role ofthe disulfide bridges within the IL–6 portion of DAB389-IL–6in the stabilization of structure required for receptor-binding.The analysis of mutants in which the substitution of eitherCys440, Cys446, Cys469 or Cys479 to Ser respectively, demonstratesthat only the disulfide bridge between Cys469 and Cys479 isrequired to maintain a functional receptor binding domain. Inaddition, the internal in-frame deletion of residues 435–451,which includes Cys440 and Cys446, was found to reduce, but notabolish receptor binding affinity. These results further demonstratethat the disulfide bridge between Cys440 and Cys446 is not essentialfor receptor-binding. However, the reduced cytotoxic potencyof DAB389-IL6(435–451) suggests that the conformationand/or receptor binding sites associated with this region ofthe fusion toxin is/are important for maintaining the wild typereceptor binding affinity and cytotoxic potency.  相似文献   

2.
We have genetically replaced the diphtheria toxin receptor bindingdomain with a synthetic gene encoding interleukin-2 (IL-2) anda translational stop signal. The diphtheria toxin-related T-cellgrowth factor fusion gene encodes a 70 586-d polypeptide, pro-BL-2-toxin.The mature form of IL-2- toxin has a deduced mol. wt of 68 086and is shown to be exported to the periplasmic compartment ofEscherichia coli (pABI508), and contain immunologic determinantsintrinsic to both its diphtheria toxin and IL-2 components.EL-2-toxin has been purified from periplasmic extracts of recombinantstrains of E.coli (pABI508) by immunoaffinity chromatographyusing immobilized anti-IL-2. The purified chimeric toxin isshown to selectively inhibit protein synthesis in IL-2 receptorbearing targeted cells, whereas cell lines which do not expressthe IL-2 receptor are resistant to IL-2-toxin action.  相似文献   

3.
Fusion toxins are hybrid proteins consisting of peptide ligandslinked through amide bonds to polypeptide toxins. The liganddirects the molecule to the surface of target cells and thetoxin enters the cytosol and induces cell death. Ricin is anexcellent candidate for use in fusion toxins because of itsextreme potency, the extensive knowledge of its atomic structureand the lack of prior immunological exposure in patients. Wesynthesized a baculovirus transfer vector with the polyhedrinpromoter followed sequentially from the 5' end with DNA encodingthe gp67A leader sequence, the tripeptide ADP, IL-2 (interleukin-2),another ADP tripeptide and RTB (ricin toxin B chain) with lectinsitemutations W37S and Y248H. Recombinant baculovirus was generatedin Sf9 insect cells and used to infect Sf9 cells. RecombinantIL-2-RTB[W37S/Y248H] protein (fusion protein of IL-2 with modificationsW37S and Y248H) was recovered at high yields from day 6 insectcell supernatants, partially purified by affinity chromatographyand reassociated with RTA (ricin toxin A chain). The fusiontoxin was soluble, immunoreactive with antibodies to RTB, LL-2and RTA and had a molecular weight of 80 kDa by SDS-PAGE. Themolecule reacted poorly with asialofetuin, but bound stronglyto IL-2 receptor based on selective cytotoxicity to IL-2 receptorbearing cells. The specific cytotoxicity could be blocked withIL-2 but not lactose. Thus, we report a novel targeted fusiontoxin protein with full biological activity.  相似文献   

4.
A number of targeted cytotoxic agents have been developed that selectively kill malignant or otherwise pathological cells. These engineered proteins consist of a potent cytotoxic element connected to a ligand domain that binds to specific molecules on the surface of the target cell. Several of these agents have shown promise in clinical trials and one is currently administered to patients. A significant technical obstacle that has impeded the development of some of these toxins is the difficulty of preparing certain recombinant proteins in properly folded forms. These fusion proteins have generally been produced in bacteria requiring them to be denatured and renatured in vitro. For some proteins this is an efficient process whereas for others it is not. We describe here a system to produce fusion toxins rapidly and efficiently by engineering mammalian cells to secrete them as properly folded molecules which can be purified in native form from cell culture medium. We have used this system to produce highly active preparations of DAB(389)-IL7, a molecule consisting of the catalytic and transmembrane domains of diphtheria toxin fused to interleukin 7. This system is generalizable and can be used to produce and evaluate rapidly fusion toxins incorporating novel or uncharacterized ligands.  相似文献   

5.
We have used site-directed insertion and point mutagenesis inan attempt to increase the cytotoxic potency and receptor-bindingaffinity of the diphtheria-toxin-related interleukin-2 (IL-2)fusion toxins. Previous studies have demonstrated that boththe DAB486-IL-Z and DAB389-IL-2 forms of the fusion toxin consistof three functional domains: the N-tenninal fragment-A-assodatedADP-ribosyltransferase, the hydrophobk-membrane-associatingdomains, and the C-terminal receptor-binding domain of humanIL-2. By insertion mutagenesis we have increased the apparentflexibility of the polypeptide chain between the membraneassociatingdomains and the receptor-binding domain of this fusion toxin.In comparison to DAB486-IL-2, the cytotoxic potency of the insertionmutants was increased by 17-fold for high-affinity IL-2-receptor-bearingcell lines in vitro. Moreover, competitive displacement experimentsusing [125I]rIL-2 demonstrate that the increase in cytotoxicpotency correlates with an increase in receptor-binding affinityfor both the high and intermediate forms of the IL-2 receptor.  相似文献   

6.
Abstract The transmembrane (T) domain of diphtheria toxin (DT) comprisesnine -helices and has been shown to play an essential role inthe efficent delivery of the catalytic (C) domain ofDT acrossthe eukaryotic cell membrane and into the cytosol. We have demonstratedrecently thatthe first three amphipathic helixes of the T domain,although not necessary for either channel formation or receptorbinding, are required for the efficient transmembrane deliveryof the Cdomain.In the present study,we have performed a detailedstructure-function analysis of T domainhelix 1 (TH1) of theDT-related fusion protein DAB389lL-2. We performed exchangeandsite-directed mutagenesis of TH1 and the resulting mutantfusion toxins were analyzed by gel electrophoresis and testedfor their efficiencies in the delivery of the C domain to thecell cytosol. We demonstrate that the overall charge distributionand hydrophobicity of amino acids in the amphipathic helix TH1,rather than a specific amino acid sequence, are critical forthe function of this helix. The insertion of a charged residuein the hydrophobic face of TH1 abolishes cytotoxic activity,whereas replacement of a hydrophobic residue by a charged aminoacid in the hydrophilic face of the helix has little, if any,effect on cytotoxic activity. In addition,we have identifiedSer220 by site-directed mutagenesis as a residue that appearsto be criticalfor correct folding of the fusion toxin. Mutationsin this position result in fusion proteins that are extremelysensitive to proteolytic attack.  相似文献   

7.
We have genetically replaced that portion of the diphtheriatoxin structural gene which encodes the native receptor-bindingdomain with a synthetic gene encoding the cytokine interleukin6 (IL-6/IFN-ß2/BSF-2). The resulting gene fusion encodesthe chimeric toxin DAB389-IL-6. Following expression and purification,we demonstrate that DAB389-IL-6 is selectively cytotoxic foreukaryotic cells bearing the interleukin 6 receptor. In addition,the cytotoxic action of DAB389-IL-6 is shown to require bindingto the IL-6 receptor, internalization by receptor-mediated endocytosisand passage through an acidic compartment. Following the deliveryof the catalytically active fragment A to the cytosol of targetcells, cellular protein synthesis is inhibited by the ADP-ribosylationof elongation factor 2. While eukaryotic cells which are devoidof the IL-6 receptor are uniformly resistant to the action ofthis fusion toxin, the data presented suggest that a minimalnumber of IL-6 receptors may be necessary to mediate the internalizationof sufficient levels of DAB389-IL-6 to result in the intoxicationof target cells.  相似文献   

8.
Protein engineering of the cholera toxin A1 subunit (CTA1) fusedto a dimer of the Ig-binding D-region of Staphylococcus aureusprotein A (DD) was employed to investigate the effect of specificamino acid changes on solubility, stability, enzymatic activityand capacity to act as an adjuvant in vivo. A series of CTA1-DDanalogues were selected by a rational modeling approach, inwhich surface-exposed hydrophobic amino acids of CTA1 were exchangedfor hydrophilic counterparts modeled for best structural fit.Of six different mutants initially produced, two analogues,CTA1Phe132Ser-DD and CTA1Pro185Gln-DD, were demonstrated tohave 50 and 70% increased solubility, respectively, at neutralpH. The double mutant CTA1Phe132Ser/Pro185Gln-DD was at leastthreefold more soluble, demonstrating an additive effect ofthe two mutations. Only the Phe132Ser analogue retained fullbiological activity and stability compared with the native CTA1-DDfusion protein. Two mutants, Pro185Gln and Phe31His mutations,exhibited unaltered ADP-ribosyltransferase activity in vitro,but demonstrated markedly reduced adjuvant function. Since thePro185 and Phe31 amino acids are located in close vicinity onthe distal side of the molecule relative to the enzymaticallyactive cleft, it is conceivable that this region is involvedin mediating a biological function, separate from the enzymaticactivity but intrinsic to the adjuvant activity of CTA1.  相似文献   

9.
Single amino acid substitutions were generated in predictedhydrophilic loop regions of the human tumour necrosis factorbeta (TNF-ß) molecule, and the mutant proteins wereexpressed in Escherichia coli and purified. Mutants with singleamino acid changes at either of two distinct loop regions, atpositions aspartic acid 50 or tyrosine 108, were found to havegreatly reduced receptor binding and cytotoxic activity. Thesetwo regions in TNF-ß correspond to known loop regionswhere mutations also result in loss of biological activity ofTNF–, a related cytokine which shares the same cellularreceptors with TNF-ß. The two distinct loops at positions31-34 and 84-89 in the known three-dimensional structure ofTNF- (equivalent to positions 46–50 and 105–110respectively in TNF-ß), lie on opposite sides of theTNF- monomer. When the TNF-a monomer forms a trimer, the twoloops, each from a different subunit of the trimer, come togetherand lie in a cleft between adjacent subunits. Together, thesefindings suggest that a TNF receptor binds to a cleft betweensubunits via surface loops at amino acid residues 31–34and 84–89 in TNF–, and similarly via surface loopsincluding amino acids aspartic acid 50 and tyrosine 108 in TNF–ß.  相似文献   

10.
The 3-D crystal structure of interleukin-1ß(IL-1ß)has been used to define its receptor binding surface by mutationalanalysis. The surface of IL-1ß was probed by site-directedmutagenesis. A total of 27 different IL-1ß muteinswere constructed, purified and analyzed. Receptor binding measurementson mouse and human cell lines were performed to identify receptoraffinities. IL-1ß muteins with modified receptor affinitywere evaluated for structural integrity by CD spectroscopy orX-ray crystallography. Changes in six surface loops, as wellas in the C- and N-termini, yielded muteins with lower bindingaffinities. Two muteins with intact binding affinities showed10- to 100-fold reduced biological activity. The surface regioninvolved in receptor binding constitutes a discontinuous areaof 1000 Å2 formed by discontinuous polypeptide chain stretches.Based on these results, a subdivision into two distinct localareas is proposed. Differences in receptor binding affinitiesfor human and mouse receptors have been observed for some muteins,but not for wild-type IL-1ß. This is the first timea difference in binding affinity of IL-1ß muteinsto human and mouse receptors has been demonstrated  相似文献   

11.
A model of the three-dimensional structure of the monocyte chemo-attractantand activating protein MCAF/MCP-1 is presented. The model ispredicted based on the previously determined solution structureof interleukin-8 (IL-8/NAP-1) [Clore, G.M., Appella, E., Yamada,M., Matsushima, K. and Gronenborn, A.M. (1990) Biochemistry29, 1689–1696]. Both proteins belong to a superfamilyof cytokine proteins involved in cell-specific chemotaxis, hostdefense and the inflammatory response. The amino acid sequenceidentity between the two proteins is 24%. It is shown that theregular secondary structure elements of the parent structurecan be retained in the modeled structure, such that the backbonehydrogen bonding pattern is very similar in the two structures.The polypeptide backbone is superimposable with an atomic r.m.s.difference of 0.9 Å and all side chains can be modeledby transferring the parent side chain conformation to the newstructure. Thus, the deduced structure, like the parent one,is a dimer and consists of a six-stranded antiparallel /3-sheet,formed by two three-stranded Greek keys, one from each monomer,upon which lie two symmetry-related antiparallel a-helices,24 Å long and separated by 14 Å. All amino acidsequence changes can be accommodated within the parent polypeptideframework without major rearrangements. This is borne out bythe fact that the IL-8/NAP-1 and modeled MCAF/MCP-1 structureshave similar non-bonding energies. These results strongly suggestthat both proteins and all other members of the superfamilymost likely have the same tertiary structure. Analysis of thedistribution of the solvent-exposed residues can be interpretedin the context of the different receptors involved in mediatingthe specific responses to both proteins and suggests that thedifferent activities of the two proteins, namely neutrophil(IL-8) versus monocyte (MCAF/MCP-1) activation and chemotaxis,reside in the specific arrangements of amino acid side chainspointing outwards from and lying in the cleft between the twoexposed long a-helices.  相似文献   

12.
13.
A gene coding for the Nereis sarcoplasmic calcium-binding protein(NSCP) was synthesized and expressed in Escherichia coli. Thesequence of the gene was derived from the protein sequence byreverse translation. It possesses a number of unique, regularlyspaced, restriction endonuclease cleavage sites to facilitatefuture site-directed mutagenesis. For the cloning strategy thegene sequence was divided into four parts. Three parts werecloned by ligation of hybridized oligomers and one part by inversePCR. The protein was expressed as a fusion protein with thebacterial chloramphenicol acetyltransferase (CAT), which couldbe easily purified by affinity chromatography. At the junctionof the CAT and NSCP moieties a recognition site for the proteolyticenzyme factor Xa was built in. However, the distance betweenthe moieties appeared to be crucial to warrant cleavage. A kineticanalysis showed that NSCP prepared from the sandworm and theone expressed by E.coli behaved in the same way. This systemprovides a basis for site-specific mutagenesis studies, in orderto elucidate the molecular mechanism of cation binding and concomitantconformational changes  相似文献   

14.
One approach to the analysis of leucocyte cell surface proteinsis to express their domains with part of another protein asa carrier. We report the use of two immunoglobulin superfamily(IgSF) domains from rat CD4 (CD4d3+4) in producing domains fromvarious superfamilies as chimeric proteins in Chinese hamsterovary cell lines. Four types of construct were successfullyexpressed containing: (i) the two IgSF domains of CD48; (ii)the IgSF domain of mb-1 which is part of the B cell antigenrecognition complex; (iii) a T cell receptor V domain; and (iv)the N-terminal domain of CD5 which belongs to the scavengerreceptor superfamily. This CD5 chimeric protein was antigenkfor a panel of CD5 mAbs showing that mAbs with functional effectsreacted with the N-terminal domain of CD5. The CD48 chimericprotein has been used both as multivalent complexes producedby crosslinking with mAbs recognizing CD4 and in a monomericform to analyse the kinetics of the interaction between CD48and CD2 [van der Merwe et al. (1993) EMBO J., 12, 4945–4954].  相似文献   

15.
16.
Human CD4 is the receptor for human immunodeficiency virus (HTV).It is well established that the first domain of CD4 binds withhigh affinity to gp120, an envelope protein of HIV, but it hasalso been demonstrated that amino acids located in its seconddomain, within or close to residues 120–127 or 163–166(lying 15 Å away from the binding site), play a role invirus infectivity. We show here that these two stretches ofamino acids happen to be important for the largest amplitudemotion obtained with the normal-mode theory for the two N-terminaldomains of human CD4: an overall rigid-body displacement ofone domain with respect to the other. Such a ‘hinge-bending’motion is unexpected since these two domains were found by crystallographersto be tightly abutting. On the other hand, since for severalproteins the hinge-bending motion experimentally observed uponligand binding was found to be similar to the largest amplitudemotion obtained with the normal-mode theory for these proteins,our results suggest that CD4 may undergo such a kind of conformationalchange upon HTV binding.  相似文献   

17.
A synthetic gene coding for the bacteriocidal protein caltrin/seminalplasminwas constructed and expressed in Escherichia coli as a fusionwith ß-galactosidase. The gene was designed with arecognition site for the plasma protease, Factor Xa, coded forimmediately prior to the N-terminus of caltrin. The ß-galactosidase-caltrinfusion protein was cleaved with Factor Xa to give caltrin, whichwas identified by its size on SDS-PAGE, its ability to reactwith an antiserum raised to the N-terminal nonapeptide of caltrinand its N-terminal amino acid sequence. After partial purification,synthetic caltrin was found to be active in an assay involvinginhibition of growth of E.coli.  相似文献   

18.
Furin and PACE4, members of the subtilisin-like proprotein convertase (SPC) family, have been implicated in the metastatic progression of certain tumors in addition to the activation of viral coat proteins and bacterial toxins, indicating that these enzymes are potential targets for therapeutic agents. Alpha1-Antitrypsin Portland is an engineered alpha1-antitrypsin designed as a furin-specific inhibitor and has been used as a tool in the functional analysis of furin. In this work, we engineered rat alpha1-antitrypsin to create a PACE4-specific inhibitor. Substituting Arg-Arg-Arg-Arg for Ala-Val-Pro-Met(352) at P4-P1 and Ala for Leu(354) at P2' created a potent PACE4- and PC6-specific inhibitor. This variant (RRRRSA) formed an SDS- and heat-stable serpin/proteinase complex with PACE4 or PC6 and inhibited both enzyme activities. The RRRRSA variant was efficiently cleaved by furin without formation of the stable complex. This is the first report of a highly selective protein-based inhibitor of PACE4 and PC6. This inhibitor will be useful in delineating the roles of PACE4 and PC6 localized in the extracellular matrix.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号