首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ethnic comparisons are extremely important and useful for studying the HLA component involved in insulin-dependent diabetes mellitus (IDDM) predisposition. To date there have been only a few reports on the association of HLA loci and IDDM in Chinese. We report here a study on DQA1*Arg52, DQB1*nonAsp57, and DRB1*04 in IDDM children and control adults among Han Chinese living in Taiwan. One hundred and fourteen unrelated children (62 boys) with IDDM were studied. Their ages at diagnosis were between 0.3 and 15.0 years (6.8 +/- 3.6 years). The control population consisted of 120 randomly selected normal adults. DQA1*Arg52(+/+), DQB1*nonAsp57(+/+), and DRB1*04(+/-) were associated with IDDM (RR = 11.50, 2.21, and 2.82; p = 1.11 x 10(-15), 2.84 x 10(-3), and 1.98 x 10(-4), respectively). DQA1*Arg52, DQB1*nonAsp57, and DRB1*04 conferred risks for IDDM (RR = 12.79, 7.11, and 2.83; pc = 8.22 x 10(-4), 5.35 x 10(-3), and 5.68 x 10(-4), respectively). Combinations of DQA1*Arg52 and DRB1*04 conferred the highest risk for IDDM (RR = 19.64, pc = 5.4 x 10(-5)). DQA1*Arg52 was associated with IDDM in subjects with DQB1*nonAsp57+ (RR = 14.87, pc = 2.41 x 10(-4)) and DQB1*nonAsp57 was also associated with IDDM in subjects with DQA1*Arg52+ (RR = 8.41, pc = 1.54 x 10(-3)), suggesting that DQA1*Arg52 and DQB1*nonAsp57 are interacting. This study demonstrates that DQA1*Arg52, DQB1*nonAsp57, and DRB1*04 confer susceptibility for IDDM to Chinese children. A combination of DQA1*Arg52 and DRB1*04 confers the highest risk and it is suggested that a susceptibility gene might be situated between DQA1*Arg52 and DRB1*04 or both are synergistic. There is an interaction between DQA1*Arg52 and DQB1*nonAsp57 and homozygosity for DQA1*Arg52/DQB1*nonAsp57, which encodes four susceptibility DQ heterodimers, confers a high risk.  相似文献   

2.
The role of HLA class II alleles in the genetic susceptibility to develop insulin-dependent diabetes mellitus (IDDM) was examined by means of PCR and oligospecific probes in 63 IDDM children and 74 controls subjects. In diabetic patients we found a significant increase in the alleles frequency DR3, DR4, DQB1*0302 and DQA1*0301 compared to the control group, where the most prevalent alleles were DR2, DR14 (DRB1*1402), DQA1*0101 and DQA1*0201. All the risk genotypes in the diabetic group were similar than in other caucasian groups: DR3/DR4-DQB1*0201/0302-DQA1*0301/0501 and DR4/DR4-DQB1*0302/0302-DQA1*0301/0301. The homozygote character no asp57 conferred an absolute risk (AR) of 3.87 and the marker Arg52 an AR of 5.78/100.000 bab year. The homozygosis for both markers (no Asp57 + Arg52) had an AR of 7.56/100.000 bab year. Regarding environmental factors associated with IDDM, our population under study showed a low prevalence of infectious agents (mainly mumps and rubella, specifically associated with IDDM) and a high prevalence of effective breast-feeding (over 3 months). These factors could be exercising a protector role in the development of IDDM. The factors that appear to be important in the low incidence of IDDM in Santiago de Chile are: the low prevalence of infectious agents related to IDDM, the high percentage of breast-feeding children in the population, the reduced frequency of susceptible molecules as DR3, DQB1*0201 (compared to other caucasian groups) and the presence of protective genotypes related to DR13 and DR14 observed in the non diabetic children.  相似文献   

3.
HLA-DQ genes are the main inherited factors predisposing to IDDM. This gene region harbors long terminal repeat (DQ LTR) elements of the human endogenous retrovirus HER V-K, which we analyzed for a possible association with disease. We first investigated whether LTR segregate with DQ alleles in families. Members (n = 110) of 29 families with at least one diabetic child, unrelated patients with IDDM (n = 159), and healthy controls (n = 173) were analyzed. Genomic DNA was amplified for DQ LTR3 by a nested primer approach as well as for DQA1 and DQB1 second exons, to assign DQA1 and DQB1 alleles. DQ LTR segregated in 24 families along with DQ alleles. Of the 29 families, 20 index patients were positive for DQ LTR. The DQ LTR was in all patients on the haplotype carrying the DQA1 *0301 and DQB1 *0302 alleles. A majority of patients had DQ LTR (62%) compared with controls (38%) (p < 1.3 x 10(-5)), even after matching for the high-risk alleles DQA1 *0501, DQB1 *0201-DQA1 *0301, and DQB1 *0302 (79% of patients and 48% of controls; p < 0.02). Subtyping for DRB1 *04 alleles in all DQB1 *0302+ individuals showed 56% DRB1 *0401, DQB1 *0302 [LTR' patients vs. 29% controls with the same haplotype (p < 0.002)]. In conclusion, these data demonstrate the segregation of DQ LTR with DQA1, DQB1 alleles on HLA haplotypes. Furthermore their presence on DRB1 *0401-, DQA1 *0301-, and DQB1 *0302-positive haplotypes suggest that they contribute to DQ-related susceptibility for IDDM.  相似文献   

4.
Several publications have shown that certain alleles at the HLA-DRB1, -DQA1, and -DQB1 loci are associated with insulin-dependent diabetes mellitus (IDDM). Many of these studies have claimed that HLA-DQalpha1Arg52 and DQbeta1Asp57 showed the strongest association with IDDM, but these results could not be confirmed in different populations. We have recently found that DRbeta1Lys71+ provided major susceptibility to IDDM and that DQbeta1Asp57- had an additive effect to DRbeta1Lys71+ [Zamani et al., 1994a: Eur J Hum Genet 2:177-184]. This was confirmed with haplotype analysis in multiplex IDDM families [Zamani et al., 1996a: J Med Genet 33:899-905]. Therefore, we have reanalyzed the data from the literature on the association of the human leucocyte antigen (HLA) DRB1, DQB1, and DQA1 with IDDM in different ethnic groups to determine whether different amino acids in the antigen binding cleft of HLA class II molecules play a preponderant role in the development of IDDM. The results showed that the DRbeta1Lys71+ allele provided the highest relative risk for IDDM in the Belgian, Danish, Greek Taiwanese, and Chinese population while this was not the case in Norwegians, Sardinians, and Algerians. Indeed, in the Sardinian and Algerian population the DRB1*0401 allele encoding Lys71+ is very rare. Nevertheless, the few positive cases were always in the patient group. We also measured the clinical relevance of the testing for DRbeta1Lys71, DQbeta1Asp57, and DQalpha1Arg52 by calculating a prevalence-corrected positive predictive value (PcPPV), a prevalence corrected negative predictive value (PcNPV), the sensitivity and specificity of these tests. The results indicated that the sensitivity of the test for DRbeta1Lys71+ was lower than for DQalpha1Ag52+ and DQbeta1Asp57-, while testing for DRbeta1Lys71+ was more specific than testing for DQbeta1Asp57- and DQalpha1Arg52+ and that the DRbeta1Lys71+ allele had a higher PcPPV than DQalpha1Arg52+ and DQbeta1Asp57- in all studied populations. These results also showed that testing for DRbeta1LyS71+/+ can be useful in IDDM risk assessment particularly in populations with a high prevalence (P) of IDDM such as the Danish (P[IDDM] = 0.65%). PcPPV for DRbeta1Lys71+/+ was 0.2313 in the Danish, indicating a 23.13% risk for an individual who is homozygous for the genotype DRbeta1Lys71+/+ to develop IDDM. Some mechanisms which might explain the role of these HLA class II alleles in susceptibility to IDDM are discussed.  相似文献   

5.
Previous studies have indicated that certain alleles of HLA-DR and -DQ genes were strongly associated with susceptibility and resistance to insulin-dependent diabetes mellitus (IDDM), and the role of DQ molecule in IDDM has been suggested. To further clarify the association of DQ alleles with IDDM, we determined the nucleotide sequences of full-length cDNA from 13 DQA1 alleles and 14 DQB1 alleles. The sequencing analysis revealed sequence polymorphisms outside the hypervariable region of DQ genes. We then analyzed the DQA1 and DQB1 polymorphisms along with that of DRB genes in 86 B-lymphoblastoid cell lines (B-LCLs) from various ethnic groups and in healthy unrelated Japanese and Norwegian individuals. The allelic and haplotypic distributions in each population revealed the characteristic haplotypic formation in the HLA class II region. HLA genes in 139 Japanese and 100 Norwegian IDDM patients were analyzed. DQB1*0301 was negatively associated with IDDM in both ethnic groups, irrespective of associated DRB1 and DQA1 alleles. In DQB1*0302 positive populations, which represented a positive association with IDDM in both ethnic groups, DRB1*0401, *0404, *0802 haplotypes increased in the patients, whereas DRB1*0406 haplotype decreased. Considering about the hierarchy in DRB1 alleles with IDDM susceptibility (DRB1*0401>*0404>*0403 in Norwegian and DRB1*0802>*0403>*0406 in Japanese), the genetic predisposition to IDDM is suggested to be defined by the combination of DR-associated susceptibility and DQ-associated susceptibility and by the DQ-associated resistance which is a dominant genetic trait.  相似文献   

6.
The association of HLA-DRB1 and DQB1 genes with IDDM in Koreans was assessed using 115 IDDM patients and 140 nondiabetic controls. DQB1*0201 is the only DQB1 allele positively associated with IDDM while DQB*0602, *0601 and *0301 are negatively associated. Three DRB1 alleles (DRB1*0301, DRB1*0407 and DRB1*0901) are positively associated while four DR allele groups (DRB1*15, DRB1*12, DRB1*10 and DRB1*14) are negatively associated. However, Haplotype analyses indicated that DQB1*0302, DRB1*0405 and DRB1*0401 may confer susceptibility because the DRB1*0405-DQB*0302 and DRB1*0401-DQB1*0302 haplotypes are positively associated with the disease. The lack of association in Koreans with the DQB1*0302 allele, which appears predisposing in studies of non-Orientals, is due to its strong linkage disequilibrium (LD) with the protective DRB1*0403 and *0406 alleles, while the lack of association with DRB1*0405 is because of its strong LD with the protective DQB1*0401 allele. Nine DR/DQ genotypes confer significantly increased risk to IDDM. Seven of the nine genotypes (DR3/4s, DR1/4s, DR4s/13, DR4s/8, DR4s/7, DR9/13 and DR3/9) were also found to be at high risk to IDDM in other populations, while the two others (DR1/9 and DR9/9) are only found in Koreans. Surprisingly, DR4/4 homozygotes are not associated with high risk to IDDM in Koreans. This observation can be explained by the high frequency of protective DR4 subtypes and the protective DQ alleles (0301 and 0401) associated with the susceptible DR4 alleles. Our analyses indicate that the counterbalancing act between susceptible DRB1 and protective DQB1, and vice versa, that has already been observed in Chinese and Japanese, is the major factor responsible for the low incidence of diabetes in Koreans.  相似文献   

7.
The HLA-associated susceptibility to develop celiac disease (CD) seems mainly to be conferred by a particular HLA-DQ heterodimer encoded by the DQA1*0501 and DQB1*0201 genes either in cis or in trans position. To study the possible influence of DRB1 or other DQA1 and DQB1 alleles on the CD susceptibility conferred by these DQ genes, we performed genomic HLA typing of 94 CD patients, selected those who carried at least one copy of the DRB1*0301-DQA1*0501-DQB1*0201 haplotype (N = 89) and compared them to 47 random, healthy Norwegians matched with the patients to carry at least one copy of the above haplotype. We found an excess of DQB1*0201 homozygosity in the patients. This was due to an increased frequency of the DRB1*0301-DQA1*0501-DQB1*0201 and DRB1*0701-DQA1*0201-DQB1*0201 haplotypes present on the other chromosome. We propose that, in individuals carrying the DQA1*0501 and DQB1*0201 alleles, the presence of a second copy of the DQB1*0201 allele increases susceptibility to CD.  相似文献   

8.
Certain DQ alpha/beta dimeric molecules have been shown to play a major role in determining susceptibility or resistance to IDDM. Whether or not predisposition associated with DR4 haplotypes is exclusively due to linkage to DQB1*0302 and DQA1*0301 alleles is still a controversial issue. A modifying effect of certain DRB1*04 subtypes on the susceptibility encoded by DQ alleles is possible, since not all DRB1*04-DQB1*0302 haplotypes are associated with the disease. The distribution of DRB1*04 subtypes was analysed in 240 DR4-positive Caucasian IDDM patients and 110 DR4-positive healthy controls using allele-specific hybridization after genomic amplification. Although an important contribution to IDDM predisposition was encoded by the DQB1*0302 allele which was found in the majority of patients (94.2% vs 64.7% in controls, Odd's ratio OR = 8.8, P < 0.0001), differences between DRB1*04 variants persisted after the effect of the DQB1 locus was removed by matching patients and controls for DQB1*0302. Thus, the DRB1*0402 allele conferred a strong IDDM-predisposing effect (OR = 3.1, P < 0.02) which was highly significant in the absence of DR3 on the second haplotype (OR = 5.6, P < 0.0001) but was not visible among DR3/4 heterozygote individuals. Conversely, the DRB1*0404 allele conferred a strong protective effect (OR = 0.26, P < 0.0001) which was dominant even in the presence of the associated high risk DR3 haplotype (OR = 0.21, P < 0.03). These data indicate that DQ molecules are not the sole contributors to the DR4-associated IDDM predisposition, and that peculiar DR4 subtypes play a significant role in susceptibility to or protection from the disease. DRB1*0402 differs from DRB1*0404 by only two acidic residues at positions 70 and 71 within the peptide binding groove, instead of amide and basic amino acids. This might induce changes of peptide binding specificity that correlate with the genetic linkage of IDDM predisposition.  相似文献   

9.
Molecular genotyping for the major histocompatibility complex (MHC) class II loci, HLA-DRB1, -DQB1 and -DQA1, in 100 patients with relapsing/remitting multiple sclerosis (MS) demonstrated an association with the HLA-DR2, DQw6-associated alleles DRB1*1501, DQB1*0602 and DQA1*0102, thereby extending this finding among MS patients in several countries to an Australian population. Analysis by the relative predispositional effect (RPE) method provided no evidence for a second susceptibility allele at either DQA1 or DQB1. However, our data and that of others suggest a negative association with DQA1*0101. Associations were found with DQB1 alleles sharing sequence homology with DQB1*0602, with DQB1 alleles encoding leucine at residue 26 (Leu 26), with DQA1 alleles encoding glutamine at residue 34 (Gln 34) and with Leu 26 plus Gln 34 alleles, but each was shown by two-loci linkage analysis to be secondary to the DRB1*1501, DQB1*0602, DQA1*0102 association. The recently reported negative association with DQA1 alleles encoding phenylalanine at amino acid 25, leucine at amino acid 69 and arginine at amino acid 52 was not found in this study, although there was a trend towards reduced phenylalanine at amino acid 25. The determination at a molecular level of an explanation for the world-wide association with these alleles remains elusive despite major advances in MHC typing.  相似文献   

10.
The DQA1 and DQB1 alleles of 258 rhesus monkeys (Macaca mulatta) of different origin were typed by PCR-RFLP. Five novel MamuDQA1 and five novel -DQB1 alleles were detected and 15 Mamu-DQA1-DQB1 haplotypes were identified. Haplotype analysis confirmed the conservation of the DQA1*01-DQB1 *06 haplotypes in evolution. The most conspicuous finding was the tight linkage between the Mamu-DQA1 and -DQB1 alleles. Almost in every case the Mamu-DQA1 allele was linked to only one particular Mamu-DQB1 allele. Although there also are constraints in the formation of DQ haplotypes in humans, such tight linkages are not observed. These findings support the hypothesis of some kind of co-evolution between DQA1 and DQB1 alleles and may reflect a stronger force of natural selection in macaques than in humans.  相似文献   

11.
The strong association of HLA-DQ genes with insulin-dependent diabetes mellitus (IDDM) susceptibility is persuasive evidence of their central role in the etiology of this autoimmune disease. Among other possibilities, it has been proposed that an unbalanced expression of IDDM-associated DQA, and/or DQB alleles may lead to alterations in the composition of alpha beta heterodimers and preferential expression of a particular heterodimer on the antigen-presenting cell surface, leading to self-recognition. In this report, we demonstrate the differential expression of DQA1 alleles in vivo, in particular of the two diabetogenic alleles DQA1*0301 and DQA1*0501. Family studies suggest that unequal HLA-DQA1 allele expression in heterozygous individuals is not associated in cis with the HLA-DQA1 gene, but may be affected by trans-acting determinant(s). We also discuss the segregation of this phenotype in IDDM-affected members. Furthermore, we examined historical samples of PBL from an IDDM-affected individual and an HLA-identical unaffected sibling acting in a kidney transplant program as donor and recipient, respectively. This analysis allowed us to establish that unbalanced expression of DQA1*0301 and DQA1*0501 can be induced by microenvironmental conditions. Inducible differential expression of HLA-DQA1 alleles may account for the discordance in the outcome of autoimmune disease in monozygotic twins and HLA-identical siblings.  相似文献   

12.
To analyze whether HLA may be a determinant of the risk of developing cervical cancer precursor lesions, the association between HLA and cervical neoplasia among HPV16-seropositive and -negative subjects was determined in a population-based cohort in the V?sterbotten county of Northern Sweden. HLA genotyping of DR and DQ was done by PCR in 74 patients and 164 healthy controls matched for age, sex and area of residence. The presence of DQA1*0102 was weakly associated with cervical neoplasia in HPV16-seropositive patients. DQB1*0602 was weakly associated with disease in all patients, but was strongly increased among HPV16-seropositive patients compared to HPV16-seropositive controls. DR15 had an association with disease that was particularly strong among HPV16-seropositive subjects. The haplotype DQA1*0102-DQB1*0602 (DQ6) was also weakly associated with disease in all patients and significantly increased among HPV16-positive patients when compared to HPV16-positive controls. A similar association was seen when analysis was restricted to CIN 2-3 patients. DQA1*0501-DQB1*0301 (DQ7) was more common among HPV16-negative patients than among HPV16-negative controls and was also more common among HPV16-negative patients than among HPV16-positive patients. In conclusion, DQA1*0102-DQB1*0602 (DQ6) is associated with an increased risk of cervical neoplasia among HPV16-seropositive subjects and DQA1*0501-DQB1*0301 (DQ7) with an increased risk among HPV16-seronegative subjects.  相似文献   

13.
Pemphigus vulgaris (PV) is a blistering disease of the skin and mucous membranes characterized by an autoantibody response against a keratinocyte adhesion molecule, desmoglein 3, causing acantholysis and blister formation. We compared high resolution MHC class II alleles and haplotype frequencies (HLA-DRB, DQA1 and DQB1) in 37 patients with PV to 89 haplotypes of normal relatives from New Delhi and Ahmedabad. We found that PV patients had significantly increased frequencies of DRB1*1404 (P < 0.0001), DQA1*0101 (P = 0.001), and DQB1*0503 (P < 0.0001). These associations were due to the increased frequencies of the haplotype HLA-DRB1*1404, DRB3*0202, DQA1*0101, DQB1*0503 in patients compared to control haplotypes (p < 0.0001). Also, patients from Ahmedabad had a significant increase in HLA-DQB1*0302 (p = 0.03). An identical amino acid sequence (Leu-Leu-Glu-Arg-Arg-Arg-Ala-Glu), in positions 67-74 of the beta domain of DRB alleles is restricted to some DR14 alleles. Therefore, there are three possible explanations for class II allele involvement in autoantibody in PV patients with class II haplotypes marked by HLA-DR14. First, the class II alleles could be markers for an unidentified susceptibility gene in linkage disequilibrium with them. Second, the primary association could be with DQB1*0503 and the association with HLA-DR14 alleles would be the result of linkage disequilibrium. Third, the HLA-DRB1 locus susceptibility could involve a specific amino acid sequence in the third hypervariable region shared by several HLA-DR14 alleles.  相似文献   

14.
Pemphigus vulgaris (PV) is an autoimmune disease of the skin and mucous membranes characterized by an autoantibody response against an epidermal cadherin. We performed high resolution HLA class II typing in 19 patients with PV from Rawalpindi, Pakistan and 19 non-Jewish European PV patients from Boston by sequence-specific oligonucleotide probe hybridization. The results were compared with two separate ethnically matched control populations. WE found that PV patients from Pakistan had significantly increased frequencies of DRB1*1404 (p = 0.01), DQA1*0101 (p = 0.02), and DQB1*0503 (p = 0.01). Among the patients of non-Jewish European ancestry, DRB1*1401 (p < 10(-6)), DQA1*0101 (p < 10(-5)) and DQB1*0503 (p < 10(-6)), were increased in PV patients. Formal linkage analysis between the major histocompatibility complex and the PV antibody was performed in 67 relatives of the 19 Pakistani patients. The results showed strong evidence for linkage of HLA-DRB1*1404, DQA1*0101, DQB1*0503, with the presence of PV antibody in relatives' families with a significant logarithm of the odds score of 6.06. Based on the three dimensional structure of class II molecules, we propose that HLA-DQA1*0101 and DQB1*0503, encode a negatively charged P9 peptide binding pocket of the DQ molecule and are significantly associated with susceptibility to PV in non-Jewish populations.  相似文献   

15.
PCR/SSOP typing methods were used to analyze the HLA Class II DRB1, DQA1, DQB1 and DPB1 loci of samples from three African American populations of Colombia. Forty samples from the Cauca (Pacific), and twenty samples each from the Choco (North Pacific Coast) and the Providencia (Caribbean island) populations, were collected and the Class II loci analyzed under the auspices of the Expedicion Humana. Despite the limited number of samples analyzed, the African Colombian populations exhibit a very high degree of class II polymorphism. A great diversity of DRB1 alleles was found, with representatives from all serological classes, including 19 DRB1 alleles in the Providencia, 16 in the Cauca and 14 in the Choco groups. In addition, a novel DQB1*02 allele (*0203) was found in two individuals from the Cauca population of the Pacific Coast. The sequence of the DQB1*0203 allele, associated with DR3, differs from DQB1*0201 by only one nucleotide substitution (C-->A) in the second position of codon 57, resulting in an Ala to Asp change. The addition of DQB1*0203 brings the total number of DQB1 alleles identified to date to 26. HLA class II diversity is much greater in these African Colombian populations than that seen in nearby Amerindian populations. Analysis of regional Colombian African American HLA population genetics is discussed with respect to the Colombian Amerindian HLA genetics described in an accompanying paper.  相似文献   

16.
BACKGROUND: Atopy, with or without associated asthma, provides a useful model for evaluating the genetic factors that control human immune responsiveness. HLA class II gene products are involved in the control of immune responses. OBJECTIVES: We investigated whether susceptibility or resistance to the disease was associated with HLA class II genes. METHODS: Blood samples were obtained from two groups of unrelated European-born white adults: 56 atopic patients (52 of them with asthma) and 39 healthy controls with no personal or familial history of asthma or atopy. Genomic DNA was extracted from peripheral blood lymphocytes. The exons of DQA1, DQB1, DRB and DPB1 genes were selectively amplified by the polymerase chain reaction (PCR) method. Genotyping was carried out by digestion of the amplified DNA products with allele-specific endonucleases (PCR-RFLP), which can recognize allelic variations in the polymorphic exon. RESULTS: We found no significant differences in the frequency of DPB1 alleles between patients and controls. HLA class II DR4 and DR7 alleles were present in 39.2% of the patients and in 2.5% of the healthy subjects (Pc*2 < or = 3.9 10(-3)). Conversely, DQA1*0103 and DQB1*0502 alleles were more frequent in the control subjects. These results confirm a previous study of an extended pedigree, which showed that DR4 and DR7 alleles were absent in all healthy members of the family and were frequently observed in atopic and/or in asthmatic subjects. CONCLUSION: We observed that HLA-DR 4 and DR7 alleles are significantly implicated in their susceptibility to the disease and suggest that this susceptibility is more related to atopy than to specific responses to allergens. According to previous studies, we could also submit that in atopic patients with asthma, DR4 alleles at the least, could be more closely associated with atopy than with asthma per se. Conversely, we suggest that some allelic DQA1 and DQB1 sequences might confer protection against the disease.  相似文献   

17.
OBJECTIVE: To investigate the correlation of HLA class I and class II antigens and alleles with various forms of myositis in Japanese patients. METHODS: Eighty-four Japanese patients with myositis [22 with polymyositis (PM), 46 with dermatomyositis (DM), 16 with myositis overlapping with other collagen vascular diseases] were typed serologically for HLA-A, B, C antigens. HLA-DRB1, DQA1, and DQB1 alleles were determined by polymerase chain reaction dependent DNA typing methods. Fifty-eight Japanese controls were typed serologically while HLA-DRB1, DQA1, and DQB1 allele typing was carried out in 175, 95, and 104 controls, respectively. RESULTS: HLA-B7 was higher in patients than controls [20.2 vs 6.9% in controls: p=0.02, odds ratio (OR)=3.4]. The increase of HLA-B7 was largely dependent on the increase in overlap patients (37.5%; p=0.005, OR=8.1). HLA-A24 and B52 were significantly decreased in PM as compared to DM, while CW3 was significantly increased in PM versus DM. DRB1*08 alleles were significantly increased in patients (36.9 vs 20.5% in controls; p=0.004, OR=2.3), especially in PM and DM. DQA1*0501 and DQB1*0301 were significantly decreased in patients [4.8 vs 13.7% in controls; p=0.04, OR=0.32, and 8.3 vs 20.2% in controls; p=0.02, OR=0.36, respectively]. CONCLUSION: HLA-class I and class II alleles associated with Japanese patients with myositis may be different from those associated with Caucasian patients.  相似文献   

18.
Early case control studies found association of the DRB1 allele, DR3, with Graves' disease (GD). Recent reports, claim the DQA1 allele, DQA1*0501, to be the primary susceptibility determinant within the human leukocyte antigen (HLA) class II region. We typed 228 GD patients, 364 controls, and 98 families (parents, GD, and unaffected sibling) at the DRB1, DQB1, and DQA1 loci. The case control study showed an increased frequency in GD, compared to controls, of DRB1*0304 (47% vs. 24%; pc < 1.4 x 10(-5)), DQB1*02 (58% vs. 46%; pc < 0.035), DQB1*0301/4 (42% vs. 28%; pc < 3.5 x 10(-3)) and DQA1*0501 (67%, vs. 39%; pc < 7 x 10(-6)). The DRB1*0304-DQB1*02-DQA1*0501 haplotype was increased in GD (47%) vs. controls (24%; pc < 1.8 x 10(-5); odds ratio = 2.72). No independent association of these alleles was observed. Preferential transmission of DRB1*0304-DQB1*02-DQA1*0501 from parents heterozygous for the haplotype to GD siblings (72%) was seen in the families (chi2 = 11.95; 1 d.f.; P = 0.0005). Lack of preferential transmission to unaffected siblings (53%; chi2 = 0.19; 1 d.f.; P = NS) excluded segregation distortion. These results show that linkage disequilibrium between GD and the HLA class II region is due to the extended haplotype DRB1*0304-DQB1*02-DQA1*0501.  相似文献   

19.
HLA class I and class II were investigated in 30 Israeli patients with invasive squamous cell carcinoma of the cervix and compared to healthy controls. None of the studied serological specificities were found to be associated with the disease. Genomic DNA from the patients was amplified by PCR, dot-blotted and hybridized with sequence specific oligonucleotide probes defining the known DQA1 and DQB1 allelic variants. Fifteen out of the 30 patients tested (50%) were found to carry the DQA1*0501 allelic variant, which is common in the local healthy population (67%). DQB1*0302 was found in eight out of 30 patients (27%) while this allele was present in 17% of the healthy population, a difference which is not statistically significant. Our data indicate that there is no apparent association between invasive squamous cell carcinoma of the cervix and the HLA antigens and alleles studied including the alleles of the DQA and DQB loci in the Israeli population. Our findings indicate that MHC genes could not be useful in the diagnosis of squamous cell carcinoma of the cervix.  相似文献   

20.
OBJECTIVE: To investigate the association of GAD (65-kDa) autoantibodies (GAD65-Abs) and IA-2 autoantibodies (IA-2-Abs) with human leukocyte antigen (HLA)-DQ and insulin gene (INS) risk markers in patients with recent-onset IDDM and their siblings. RESEARCH DESIGN AND METHODS: Blood was sampled from 608 recent-onset IDDM patients and 480 siblings, aged 0-39 years and consecutively recruited by the Belgian Diabetes Registry, to determine GAD65- and IA-2-Ab (radiobinding assay), HLA-DQ- (allele-specific oligonucleotyping), and INS-genotypes (restriction fragment length polymorphism analysis; siblings, n = 439). RESULTS: At the onset of IDDM, GAD65-Abs were preferentially associated with two populations at genetic risk but only in the 20- to 39-year age-group: 1) their prevalence was higher in carriers of DQA1*0301-DQB1*0302 (88 vs. 73% in non[DQA1*0301-DQB1*0302], P = 0.001), and 2) an association was found in patients lacking this haplotype but carrying DQA1*0501-DQB1*0201, together with INS I/I (87 vs. 54% vs. non[INS I/I], P = 0.003). Siblings of IDDM patients also presented the association of GAD65-Abs with DQA1*0301-DQB1*0302 (13 vs. 2% non[DQA1*0301-DQB1*0302], P < 0.001), while associations with the second genetic risk group could not yet be assessed. At the onset of IDDM, IA-2-Ab prevalence was higher in carriers of DQA1*0301-DQB1*0302 (69 vs. 39% non[DQA1*0301-DQB1*0302], P < 0.001) but not of DQA1*0501-DQB1*0201 or INS I/I. This association was present in both the 0- to 19- and the 20- to 39-year age-groups. It was also found in siblings of IDDM patients (4 vs. 0% non[DQA1*0301-DQB1*0302], P < 0.001). CONCLUSIONS: Both GAD65- and IA-2-Abs exhibit higher prevalences in presence of HLA-DQ- and/or INS-genetic risk markers. Their respective associations differ with age at clinical onset, suggesting a possible usefulness in the identification of subgroups in this heterogeneous disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号