首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Although it has been verified that tin whiskers can be prevented by the addition of 0.5 wt.% Zn into a Sn-3Ag-0.5Cu-0.5Ce solder, no detailed studies have been conducted on interfacial reactions and mechanical properties of Sn-3Ag-0.5Cu-0.5Ce-xZn solder joints with an immersion Ag surface finish. The intermetallic compounds formed during the reflow and aging of Sn-3Ag-0.5Cu and Sn-3Ag-0.5Cu-0.5Ce-xZn solder ball grid array (BGA) packages were investigated. Because more heterogeneous nucleation sites, provided by CeSn3 intermetallics and Zn atoms, formed in the Sn-3Ag-0.5Cu-0.5Ce-xZn solder matrix, and Cu and Zn have a stronger affinity than Cu and Sn, the Cu-Sn intermetallics growth in Sn-3Ag-0.5Cu-0.5Ce-xZn solder joints with Ag/Cu pads was suppressed. The 0.2% Zn addition for inhibiting rapid whisker growth in RE-doped Sn-Ag-Cu solder joints is more appropriate than 0.5 wt.% additions, as excess Zn addition causes poor oxidation resistance and inferior bonding strength.  相似文献   

2.
Sn-Ag-Cu solders doped with rare-earth elements were reported to exhibit beneficial mechanical properties; however, rapid whisker growth could be induced. In order to retain the advantageous effects of rare-earth doping without causing the formation of tin whiskers, a Sn-3Ag-0.5Cu-0.05Ce alloy was suggested. In the present study, metallographic observations indicate that whisker growth is indeed prevented in this alloy. However, tensile tests with the bulk materials show that the ultimate tensile strength and Young’s modulus of this Sn-3Ag-0.5Cu-0.05Ce alloy are only slightly higher than those of undoped Sn-3Ag-0.5Cu. Further reliability tests with actual ball grid array packages indicate that the Sn-3Ag-0.5Cu-0.05Ce solder joints have fatigue lives similar to those of undoped Sn-3Ag-0.5Cu specimens regardless of the various surface finishes, such as electroless nickel/immersion gold (ENIG), immersion tin (ImSn), and organic solderability preservatives (OSP). The results suggest that, although lowering the content of rare-earth elements in solders can inhibit the occurrence of rapid whisker growth, it cannot ensure the improvement of the tensile properties of bulk solders and the fatigue reliability of solder joints in actual packages.  相似文献   

3.
The effects of a rare-earth element on the microstructure, mechanical properties, and whisker growth of Sn-58Bi alloys and solder joints in ball grid array (BGA) packages with Ag/Cu pads have been investigated. Mechanical testing indicated that the elongation of Sn-58Bi alloys doped with Ce increased significantly, and the tensile strength decreased slightly, in compar- ison with undoped Sn-58Bi. In addition, the growth of both fiber- and hillock-shaped tin whiskers on the surface of Sn-58Bi-0.5Ce was retarded in the case of Sn-3Ag-0.5Cu-0.5Ce alloys. The growth of interfacial intermetallic compounds (IMC) in Sn-58Bi-0.5Ce solder joints was slower than that in Sn-58Bi because the activity of Ce atoms at the interface of the Cu6Sn5 IMC/solder was reduced. The reflowed Sn-58Bi and Sn-58Bi-0.5Ce BGA packages with Ag/Cu pads had a ball shear strength of 7.91 N and 7.64 N, which decreased to about 7.13 N and 6.87 N after aging at 100°C for 1000 h, respectively. The reflowed and aged solder joints fractured across the solder balls with ductile characteristics after ball shear tests.  相似文献   

4.
The wettability of newly developed Sn-2.8Ag-0.5Cu-1.0Bi lead-free solder on Cu and Ni substrates was assessed through the wetting balance tests. The wettability assessment parameters such as contact angle (ϑc) and maximum wetting force (Fw) were documented for three solder bath temperatures with three commercial fluxes, namely, no-clean (NC), nonactivated (R), and water-soluble organic acid flux (WS). It was found that the lead-free Sn-2.8Ag-0.5Cu-1.0Bi solder exhibited less wetting force, i.e., poorer wettability, than the conventional Sn-37Pb solder for all flux types and solder bath temperatures. The wettability of Sn-2.8Ag-0.5Cu-1.0Bi lead-free solder on Cu substrate was much higher than that on Ni substrate. Nonwetting for Sn-2.8Ag-0.5Cu-1.0Bi and Sn-Pb solders on Ni substrate occurred when R-type flux was used. A model was built and simulations were performed for the wetting balance test. The simulation results were found very close to the experimental results. It was also observed that larger values of immersion depth resulted in a decrease of the wetting force and corresponding meniscus height, whereas the increase in substrate perimeter enhanced the wettability. The wetting reactions between the solder and Cu/Ni substrates were also investigated, and it was found that Cu atoms diffused into the solder through the intermetallic compounds (IMCs) much faster than did the Ni atoms. Rapid formation of IMCs inhibited the wettability of Sn-2.8Ag-0.5Cu-1.0Bi solder compared to the Sn-Pb solder.  相似文献   

5.
The effects of rare-earth elements on the microstructure and mechanical properties of Sn-9Zn alloys and solder joints in ball grid array packages with Ni/Au(ENIG) surface finishes have been investigated. Metallographic observations showed that (Ce0.8Zn0.2)Sn3 and (La0.9Zn0.1)Sn3 intermetallic compounds appeared in the solder matrix of Sn-9Zn-0.5Ce and Sn-9Zn-0.5La alloys, respectively. Both fiber- and hillock-shaped tin whiskers were inhibited in the Sn-9Zn-0.5Ce solder, while tin fibers were still observed on the surface of oxidized (La0.9Zn0.1)Sn3 intermetallics in Sn-9Zn-0.5La after air exposure at room temperature. Mechanical testing indicated that the tensile strength of Sn-9Zn alloys doped with Ce and La increased significantly, and the elongation decreased, in comparison with the undoped Sn-9Zn. The bonding strengths of the as-reflowed Sn-9Zn-0.5Ce and Sn-9Zn-0.5La solder joints were also improved. However, aging treatment at 100°C and 150°C caused degradation of ball shear strength in all specimens. During the reflowing and aging processes, AuZn8 intermetallic phases appeared at the interfaces of all solder joints. In addition, Zn-rich phases were observed to migrate from the solder matrix to the solder/pad interfaces of the aged specimens.  相似文献   

6.
It has been discovered for the first time that Sn whiskers appeared in Sn3Ag0.5Cu0.5Ce solder joints of ball grid array (BGA) packages after storage at room temperature (natural aging) for less than 3 days and they grew at a high rate of 2.9 ?/sec. In one particular case, whiskers even formed after 1 day of storage at an extremely high growth rate of 8.6 ?/sec. Experimental investigations showed that a number of CeSn3 clusters existed in the Sn3Ag0.5Cu0.5Ce solder matrix after the reflow process. Further natural aging in air for several days caused the CeSn3 phases to oxidize rapidly, from which many Sn whiskers sprouted and grew to a length of hundreds of micrometers. The most commonly observed whiskers have been long fiber-shaped ones of 0.1 μm to 0.3 μm in diameter (type I), while short whiskers larger than 1 μm in diameter can also be found (type II). Here in our case, the surface oxide of the CeSn3 phase possessed a higher content of Ce than of Sn, which implied that a Ce-depleted region (nearly of pure Sn) was left beneath the oxide layer. The abnormal whisker growth was attributed to the compressive stress squeezing the Sn atoms in the Ce-depleted region of CeSn3 phase out of the oxide layer.  相似文献   

7.
Potentiodynamic polarization techniques were employed in the present study to investigate the corrosion behavior of Pb-free Sn-1Ag-0.5Cu-XNi solder alloys in 3.5% NaCl solution. Polarization studies indicated that an increase in Ni content from 0.05 wt.% to 1 wt.% in the solder alloy shifted the corrosion potential (E corr) towards more negative values and increased the linear polarization resistance. Increased addition of Ni to 1 wt.% resulted in significant increase in the concentration of both Sn and Ni oxides on the outer surface. Secondary-ion mass spectrometry and Auger depth profile analysis revealed that oxides of tin contributed primarily towards the formation of the passive film on the surface of the solder alloys containing 0.05 wt.% and 1 wt.% Ni. Scanning electron microscopy (SEM) and energy-dispersive x-ray spectroscopy (EDX) established the formation of a Sn whisker near the passive region of the solder alloy obtained from the polarization curves. The formation of Sn whiskers was due to the buildup of compressive stress generated by the increase in the volume of the oxides of Sn and Ni formed on the outer surface. The presence of Cl? was responsible for the breakdown of the passive film, and significant pitting corrosion in the form of distinct pits was noticed in Sn-1Ag-0.5Cu-0.5Ni solder alloy after the polarization experiment.  相似文献   

8.
Fatigue crack-growth behavior of Sn-Ag-Cu and Sn-Ag-Cu-Bi lead-free solders   总被引:2,自引:0,他引:2  
Fatigue crack-growth behavior and mechanical properties of Sn-3Ag-0.5Cu, Sn-3Ag-0.5Cu-1Bi, and Sn-3Ag-0.5Cu-3Bi solders have been investigated at room temperature (20°C). The tensile strength and hardness of the solders increased with increasing Bi content. However, the yield strengths of Sn-3Ag-0.5Cu-1Bi and Sn-3Ag-0.5Cu-3Bi solders were nearly similar, but the 3Bi solder exhibited the lowest ductility. Fatigue crack-growth behavior of the solders was dominantly cycle dependent in the range of stress ratios from 0.1–0.7 at a frequency of 10 Hz, except for the Sn-3Ag-0.5Cu solder tested at a stress ratio of 0.7. Mixed intergranular/transgranular crack propagation was observed for the Sn-3Ag-0.5Cu solder tested at the stress ratio of 0.7, indicating the importance of creep in crack growth. The Sn-3Ag-0.5Cu-1Bi and Sn-3Ag-0.5Cu-3Bi solders had higher resistance to time-dependent crack growth, resulting from the strengthening effect of the Bi constituent. It appears that the addition of Bi above a certain concentration is harmful to the mechanical properties of Sn-3Ag-0.5Cu.  相似文献   

9.
Cerium (Ce)-containing Sn-3.9Ag-0.7Cu alloy exhibits desirable attributes of microstructural refinement, increased ductility, and mechanical shock performance, while possessing better oxidation resistance than other rare-earth-containing solders. In addition to the beneficial mechanical properties, it is imperative to study the reliability performance of novel solder alloys in the form of electromigration experiments, in comparison with Sn-3.9Ag-0.7Cu. In this study, electromigration tests were conducted on solder joints at elevated temperature with a constant current using a V-groove testing methodology. The microstructural change of solder joints during electromigration was investigated by scanning electron microscopy, and the void growth was monitored utilizing the three-dimensional (3D) x-ray microtomography imaging technique. The current density inside the solder matrix was determined by 3D microstructure-based finite-element modeling. Finally, the product of diffusivity and effective charge number of solder joints during electromigration was calculated from both marker displacement and 3D void growth. It was found that electromigration-induced Cu diffusion in Sn-3.9Ag-0.7Cu-0.5Ce alloy was greatly accelerated, and void formation at the cathode side was retarded as a result of finer microstructure and existence of CeSn3 intermetallic particles.  相似文献   

10.
Three kinds of Sn-Ag-based lead-free solders, Sn-3.5Ag-0.7Cu, Sn-3.5Ag-0.5Cu-0.07Ni-0.01Ge, and Sn-3.5Ag-0.07Ni (in wt.%), were selected to explore the effect of microelements (Ni and Ge) on the interfacial reaction between the solder and the Cu substrate. The thickness of the interfacial intermetallics formed with the Sn-3.5Ag-0.5Cu-0.07Ni-0.01Ge and Sn-3.5Ag-0.07Ni solders is several times that of the Sn-3.5Ag-0.7Cu solder. The added microelements converted the feature of interfacial intermetallics from pebble shape to worm shape. However, the results of x-ray diffraction (XRD) analysis suggest that the interfacial intermetallics formed with both solders have the same crystal structure. The results of energy dispersive spectroscopy (EDS) analysis show that the major interfacial intermetallic formed with the Sn-3.5Ag-0.7Cu solder is Cu6Sn5, while it is (Cux,Ni1−x)6Sn5 with Sn-3.5Ag-0.5Cu-0.07Ni-0.01Ge. Ni influences the interfacial intermetallics and plays the influential role on the difference of interfacial reaction rate between liquid solder and solid Cu and the morphology of interfacial intermetallics. Additionally, the growth kinetics of the interfacial intermetallic compounds (IMCs) formed in the systems of Cu/Sn-3.5Ag-0.7Cu and Cu/Sn-3.5Ag-0.07Ni at high-temperature storage was also explored.  相似文献   

11.
Low-cycle fatigue (LCF) tests on as-cast Sn-3.5Ag, Sn-3Ag-0.5Cu, Sn-3Ag-0.5Cu-1Bi, and Sn-3Ag-0.5Cu-3Bi solders was carried out using a noncontact strain-controlled system at 20°C with a constant frequency of 0.1 Hz. The addition of Cu does not significantly affect the fatigue life of eutectic Sn-Ag solder. However, the fatigue life was significantly reduced with the addition of Bi. The LCF behavior of all solders followed the Coffin-Manson relationship. The fatigue life of the present solders is dominated by the fracture ductility and can be described by the ductility-modified Coffin-Manson’s relationship. Steps at the boundaries of dendrite phases were the initiation sites for microcracks for Sn-3.5Ag, Sn-3Ag-0.5Cu, and Sn-3Ag-0.5Cu-1Bi solders, while for Sn-3Ag-0.5Cu-3Bi solder, cracks initiated along both the dendrite boundaries and subgrain boundaries in the dendrite phases. The linking of these cracks and the propagation of cracks inside the specimen occurred both transgranularly through eutectic phases and intergranularly along dendrite boundaries or subgrain boundaries.  相似文献   

12.
A Model for Rapid Tin Whisker Growth on the Surface of ErSn3 Phase   总被引:1,自引:0,他引:1  
Spontaneous growth of tin whiskers on the finish of leadframes is an extremely slow process under moderate temperature conditions. It therefore becomes difficult to track the continuous growth of tin whiskers and to vary the experimental conditions to determine their root causes. Accordingly, the fundamental growth behaviors of tin whiskers are still not fully understood. In this study, rapid tin whisker growth was achieved by adding 1 wt.% Er to Sn-3.8Ag-0.7Cu solder alloy. The results showed unique tin whisker morphology with nonconstant cross-section. An explanation is proposed by adding kinetic energy to the conventional energy balance equation. In addition, a double compressive stress zone is proposed to demonstrate the driving force for tin whisker growth in rare-earth-bearing phases.  相似文献   

13.
This study compares the high-Ag-content Sn-3Ag-0.5Cu with the low- Ag-content Sn-1Ag-0.5Cu solder alloy and the three quaternary solder alloys Sn-1Ag-0.5Cu-0.1Fe, Sn-1Ag-0.5Cu-0.3Fe, and Sn-1Ag-0.5Cu-0.5Fe to understand the beneficial effects of Fe on the microstructural stability, mechanical properties, and thermal behavior of the low-Ag-content Sn-1Ag-0.5Cu solder alloy. The results indicate that the Sn-3Ag-0.5Cu solder alloy possesses small primary β-Sn dendrites and wide interdendritic regions consisting of a large number of fine Ag3Sn intermetallic compound (IMC) particles. However, the Sn-1Ag-0.5Cu solder alloy possesses large primary β-Sn dendrites and narrow interdendritic regions of sparsely distributed Ag3Sn IMC particles. The Fe-bearing SAC105 solder alloys possess large primary β-Sn dendrites and narrow interdendritic regions of sparsely distributed Ag3Sn IMC particles containing a small amount of Fe. Moreover, the addition of Fe leads to the formation of large circular FeSn2 IMC particles located in the interdendritic regions. On the one hand, tensile tests indicate that the elastic modulus, yield strength, and ultimate tensile strength (UTS) increase with increasing Ag content. On the other hand, increasing the Ag content reduces the total elongation. The addition of Fe decreases the elastic modulus, yield strength, and UTS, while the total elongation is still maintained at the Sn-1Ag-0.5Cu level. The effect of aging on the mechanical behavior was studied. After 720 h and 24 h of aging at 100°C and 180°C, respectively, the Sn-1Ag-0.5Cu solder alloy experienced a large degradation in its mechanical properties after both of the aging conditions, whereas the mechanical properties of the Sn-3Ag-0.5Cu solder alloy degraded more dramatically after 24 h of aging at 180°C. However, the Fe-bearing SAC105 solder alloys exhibited only slight changes in their mechanical properties after both aging procedures. The inclusion of Fe in the Ag3Sn IMC particles suppresses their IMC coarsening, which stabilizes the mechanical properties of the Fe-bearing SAC105 solder alloys after aging. The results from differential scanning calorimetry (DSC) tests indicate that the addition of Fe has a negligible effect on the melting behavior. However, the addition of Fe significantly reduces the solidification onset temperature and consequently increases the degree of undercooling. In addition, fracture surface analysis indicates that the addition of Fe to the Sn-1Ag-0.5Cu alloy does not affect the mode of fracture, and all tested alloys exhibited large ductile dimples on the fracture surface.  相似文献   

14.
In this work, we present ball impact test (BIT) responses and fractographies obtained at an impact velocity of 500 mm/s on Sn-4Ag-0.5Cu, Sn-1Ag-0.5Cu, Sn-1Ag-0.5Cu-0.05Ni, Sn-1.2Ag-0.5Cu-0.05Ni, and Sn-1Ag-0.5Cu-0.05Ge package-level solder joints. The solder joints are bonded on substrate pads of either immersion tin (IT) or direct solder on pad (DSOP) surface finishes. Differences of BIT results with respect to multi-reflow are also reported. Taking the impact energy as an indication of board-level drop reliability of the solder joints, the BIT results indicate that better reliability can be achieved by adopting Sn-Ag-Cu solder alloys with low Ag weight contents as well as IT substrate pad finish rather than DSOP. Moreover, the addition of Ni or Ge to the solder alloy provides a large improvement; Ni alters the interfacial intermetallic compound (IMC) structure while Ge enhances the mechanical behavior of the bulk solder.  相似文献   

15.
Corrosion characteristics of Sn-3.0Ag-0.5Cu (SAC) solder doped with In and Zn in NaCl solutions were conducted by sweeping the voltage at a constant rate with a potentiostat. Whisker growth was completed by dipping in 3.5 wt.% NaCl salt solution. Electrochemical migration (ECM) experiment was carried out as a designed program in an electric field with a power supply. Surface morphology and elemental composition of SAC and its doped candidates were determined by SEM, EDAX, XRD techniques. Results showed that when the percent content of Zn was ?1%, corrosion current density (Icorr) increased with Zn% increasing, it was up to the highest value when %Zn was 1%. After that, the open circuit potential moved negatively quickly as a function of Zn percent, however Icorr increased with Zn percent increasing, also lower than that of doped solder with 1 wt.% Zn, higher than that of no doped solder. The same corrosive law was suitable for SAC candidate with In doping. SEM morphologies showed that whiskers existed in all cases of different In/Zn-concentration alloys. After exposure to severe conditions (3.5 wt.% NaCl solution) for 7 days, the longest whisker for 96.8(Sn-3.0Ag-0.5Cu)-0.2In-3Zn solder was about 300 μm, the average grown rate was evaluated to about 5 Å/s which is higher than the reported result in the former literatures. The possible mechanism was that: after metals reacted with water/ions in water, products or oxidizer in solder expanded to induce compression stress, during the release of stress, Sn extruded out. ECM tests showed that dendrite growth was a result of system under far-equilibrium conditions in sorts of fields as electrical field, thermal field, concentration field, etc., the farer off the equilibrium, the easier that ECM process took place. Dendrite growth rate of SAC solder were faster than those of its candidates with In or Zn dopings, furthermore, rate with Zn doping was larger than that with In doing, which is due to differences on surfaces or different intermetallic compound formations (IMC) on surfaces. Doped with In, dendrites looked like emarcid petals, although they might not look like dendrites, contents on dendrites were mainly Sn. Whereas, dendrites looked like clew with only Zn doping, it was mainly Sn with little Zn. Different from the above, dendritic microstructures of SAC solder without doping entirely looked like branches, contents were mainly Cu and Sn. From the points of corrosion and whisker growth, Zn, In dopings in SAC solders may be not benefit to micro/nanoelectronic packaging, though other mechanical or soldering characteristics can be improved with their dopings.  相似文献   

16.
Anodic dissolution characteristics and electrochemical migration (ECM) behavior of Sn-3.0Ag-0.5Cu solder in NaCl and Na2SO4 solutions were investigated using anodic polarization tests and water drop tests (WDT). The ECM lifetime of Sn-3.0Ag-0.5Cu solder in NaCl solution (42.4 s) was longer than that in Na2SO4 solution (34.8 s). The pitting potential of Sn-3.0Ag-0.5Cu solder in NaCl solution (135 mV, SCE) was higher than that in Na2SO4 solution (−367 mV, SCE). The passivity film (SnO2) formed on Sn-3.0Ag-0.5Cu solder during WDTs in NaCl solution was thicker than that formed in Na2SO4 solution. Therefore, the longer ECM lifetime of Sn-3.0Ag-0.5Cu solder in NaCl solution than in Na2SO4 solution can be attributed to the higher pitting potential in the NaCl solution, which is ascribed to the formation of a thicker passivity film (SnO2) in the former. It was confirmed that microelements such as Ag and Cu do not take part in ECM because they form chemically stable intermetallic compounds with Sn. We believe that Sn is the only element that contributes to ECM, and dissolution of Sn at the anode is possibly the rate-determining step of ECM of Sn-3.0Ag-0.5Cu solder.  相似文献   

17.
The effect of Ag on the microstructure and thermal behavior of Sn-Zn and Sn-8.5Zn-xAg-0.01Al-0.1Ga solders (x from 0.1 wt.% to 1 wt.%) under high-temperature/relative humidity conditions (85°C/85% RH) for various exposure times was investigated. Scanning electron microscopy (SEM) studies revealed that, in all the investigated solders, the primary α-Zn phases were surrounded by eutectic β-Sn/α-Zn phases, in which fine Zn platelets were dispersed in the β-Sn matrix. SEM micrographs revealed that increase of the Ag content to 1 wt.% resulted in coarsening of the dendritic plates and diminished the Sn-9Zn eutectic phase in the microstructure. Differential scanning calorimetry (DSC) studies revealed that the melting temperature of Sn-8.5Zn-xAg-0.01Al-0.1Ga solder decreased from 199.6°C to 199.2°C with increase of the Ag content in the solder alloy. Both ZnO and SnO2 along with Ag-Zn intermetallic compound (IMC) were formed on the surface when Sn-8.5Zn-0.5Ag-0.01Al-0.1Ga solder was exposed to high-temperature/high-humidity conditions (85°C/85% RH) for 100 h. The thickness of the ZnO phase increased as the Ag content and exposure time were increased. Sn whiskers of various shapes and lengths varying from 2 μm to 5 μm were extruded from the surface when the investigated five-element solder with Ag content varying from 0.5 wt.% to 1 wt.% was exposed to similar temperature/humidity conditions for 250 h. The length and density of the whiskers increased with further increase of the exposure time to 500 h and the Ag content in the solder to 1 wt.%. The Sn whisker growth was driven by the compressive stress in the solder, which was generated due to the volume expansion caused by ZnO and Ag-Zn intermetallic compound formation at the grain boundaries of Sn.  相似文献   

18.
The formation and growth of intermetallic compounds (IMCs) in lead-free solder joints, during soldering or subsequent aging, have a significant effect on the thermal and mechanical behavior of solder joints. In this study, the effects of a 0.2wt.%Zn addition into Sn-3.0Ag-0.5Cu (SAC) lead-free solder alloys on the growth of IMCs with Cu substrates during soldering and subsequent isothermal aging were investigated. During soldering, it was found that a 0.2wt.%Zn addition did not contribute to forming the IMC, which was verified as the same phase structure as the IMC for Sn-3.0Ag-0.5Cu/Cu. However, during solid-state isothermal aging, the IMC growth was remarkably depressed by the 0.2 wt.% Zn addition in the SAC solder matrix, and this effect tended to be more prominent at higher aging temperature. The activation energy for the overall IMC growth was determined as 61.460 and 106.903 kJ/mol for Sn-Ag-Cu/Cu and Sn-Ag-Cu-0.2Zn/Cu, respectively. The reduced diffusion coefficient was confirmed for the 0.2Zn-containing solder/Cu system. Also, thermodynamic analysis showed the reduced driving force for the Cu6Sn5 IMC with the addition of Zn. These may provide the evidence to demonstrate the depressing effect of IMC growth due to the 0.2wt.%Zn addition in the Sn-Ag-Cu solder matrix.  相似文献   

19.
After reflow of Sn-3.8Ag-0.7Cu and Sn-20In-2Ag-0.5Cu solder balls on Au/Ni surface finishes in ball grid array (BGA) packages, scallop-shaped intermetallic compounds (Cu0.70Ni0.28Au0.02)6Sn5 (IM1a) and (Cu0.76Ni0.24)6(Sn0.86In0.14)5 (IM1b), respectively, appear at the interfaces. Aging at 100°C and 150°C for Sn-3.8Ag-0.7Cu results in the formation of a new intermetallic phase (Cu0.70Ni0.14Au0.16)6Sn5 (IM2a) ahead of the former IM1a intermetallics. The growth of the newly appeared intermetallic compound, IM2a, is governed by a parabolic relation with an increase in aging time, with a slight diminution of the former IM1a intermetallics. After prolonged aging at 150°C, the IM2a intermetallics partially spall off and float into the solder matrix. Throughout the aging of Sn-20In-2Ag-.5Cu solder joints at 75°C and 115°C, partial spalling of the IM1b interfacial intermetallics induces a very slow increase in thickness. During aging at 115°C for 700 h through 1,000 h, the spalled IM1b intermetallics in the solder matrix migrate back to the interfaces and join with the IM1b interfacial intermetallics to react with the Ni layers of the Au/Ni surface finishes, resulting in the formation and rapid growth of a new (Ni0.85Cu0.15)(Sn0.71In0.29)2 intermetallic layer (IM2b). From ball shear tests, the strengths of the Sn-3.8Ag-0.7Cu and Sn-20In-2Ag-0.5Cu solder joints after reflow are ascertained to be 10.4 N and 5.4 N, respectively, which drop to lower values after aging. An erratum to this article is available at .  相似文献   

20.
The mechanism of reaction between Nd and Ga in Sn-Zn-0.5Ga-xNd solder was investigated in order to enhance the reliability of soldered joints. It was found that, after aging treatment at ambient temperature and 125°C for over 3000 h, no Sn whisker growth was observed in Sn-9Zn-0.5Ga-0.08Nd soldered joints. X-ray diffraction (XRD) analysis and thermodynamic calculations indicated that Ga reacted with Nd instead of Sn-Nd intermetallic compound (IMC), eliminating Sn whisker growth. Shear force testing was carried out, and the results indicated that Sn-9Zn-0.5Ga-0.08Nd solder still had excellent mechanical properties after aging treatment. This new discovery can provide a novel approach to develop high-reliability solder without risk of Sn whiskers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号