首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 29 毫秒
1.
A pair of unit clauses is called conflicting if it is of the form (x), $(\bar{x})$ . A CNF formula is unit-conflict free (UCF) if it contains no pair of conflicting unit clauses. Lieberherr and Specker (J. ACM 28:411?C421, 1981) showed that for each UCF CNF formula with m clauses we can simultaneously satisfy at least $\hat{ \varphi } m$ clauses, where $\hat{ \varphi }=(\sqrt{5}-1)/2$ . We improve the Lieberherr-Specker bound by showing that for each UCF CNF formula F with m clauses we can find, in polynomial time, a?subformula F?? with m?? clauses such that we can simultaneously satisfy at least $\hat{ \varphi } m+(1-\hat{ \varphi })m'+(2-3\hat {\varphi })n''/2$ clauses (in F), where n?? is the number of variables in F which are not in F??. We consider two parameterized versions of MAX-SAT, where the parameter is the number of satisfied clauses above the bounds m/2 and $m(\sqrt{5}-1)/2$ . The former bound is tight for general formulas, and the later is tight for UCF formulas. Mahajan and Raman (J. Algorithms 31:335?C354, 1999) showed that every instance of the first parameterized problem can be transformed, in polynomial time, into an equivalent one with at most 6k+3 variables and 10k clauses. We improve this to 4k variables and $(2\sqrt{5}+4)k$ clauses. Mahajan and Raman conjectured that the second parameterized problem is fixed-parameter tractable (FPT). We show that the problem is indeed FPT by describing a polynomial-time algorithm that transforms any problem instance into an equivalent one with at most $(7+3\sqrt{5})k$ variables. Our results are obtained using our improvement of the Lieberherr-Specker bound above.  相似文献   

2.
We study the Cutwidth problem, where the input is a graph G, and the objective is find a linear layout of the vertices that minimizes the maximum number of edges intersected by any vertical line inserted between two consecutive vertices. We give an algorithm for Cutwidth with running time O(2 k n O(1)). Here k is the size of a minimum vertex cover of the input graph G, and n is the number of vertices in G. Our algorithm gives an O(2 n/2 n O(1)) time algorithm for Cutwidth on bipartite graphs as a corollary. This is the first non-trivial exact exponential time algorithm for Cutwidth on a graph class where the problem remains NP-complete. Additionally, we show that Cutwidth parameterized by the size of the minimum vertex cover of the input graph does not admit a polynomial kernel unless NP?coNP/poly. Our kernelization lower bound contrasts with the recent results of Bodlaender et al. (ICALP, Springer, Berlin, 2011; SWAT, Springer, Berlin, 2012) that both Treewidth and Pathwidth parameterized by vertex cover do admit polynomial kernels.  相似文献   

3.
We consider transactional memory contention management in the context of balanced workloads, where if a transaction is writing, the number of write operations it performs is a constant fraction of its total reads and writes. We explore the theoretical performance boundaries of contention management in balanced workloads from the worst-case perspective by presenting and analyzing two new polynomial time contention management algorithms. We analyze the performance of a contention management algorithm by comparison with an optimal offline contention management algorithm to provide a competitive ratio. The first algorithm Clairvoyant is $O(\sqrt{s})$ -competitive, where s is the number of shared resources. This algorithm depends on explicitly knowing the conflict graph at each time step of execution. The second algorithm Non-Clairvoyant is $O(\sqrt{s} \cdot \log n)$ -competitive, with high probability, which is only a O(log?n) factor worse, but does not require knowledge of the conflict graph, where n is the number of transactions. Both of these algorithms are greedy. We also prove that the performance of Clairvoyant is close to optimal, since there is no polynomial time contention management algorithm for the balanced transaction scheduling problem that is better than $O((\sqrt{s})^{1-\varepsilon})$ -competitive for any constant ε>0, unless NP?ZPP. To our knowledge, these results are significant improvements over the best previously known O(s) competitive ratio bound.  相似文献   

4.
For a finite alphabet ∑ we define a binary relation on \(2^{\Sigma *} \times 2^{2^{\Sigma ^* } } \) , called balanced immunity. A setB ? ∑* is said to be balancedC-immune (with respect to a classC ? 2Σ* of sets) iff, for all infiniteL εC, $$\mathop {\lim }\limits_{n \to \infty } \left| {L^{ \leqslant n} \cap B} \right|/\left| {L^{ \leqslant n} } \right| = \tfrac{1}{2}$$ Balanced immunity implies bi-immunity and in natural cases randomness. We give a general method to find a balanced immune set'B for any countable classC and prove that, fors(n) =o(t(n)) andt(n) >n, there is aB εSPACE(t(n)), which is balanced immune forSPACE(s(n)), both in the deterministic and nondeterministic case.  相似文献   

5.
Pick a binary string of length n and remove its first bit b. Now insert b after the first remaining 10, or insert $\overline{b}$ at the end if there is no remaining 10. Do it again. And again. Keep going! Eventually, you will cycle through all 2 n of the binary strings of length n. For example, are the binary strings of length n=4, where and . And if you only want strings with weight (number of 1s) between ? and u? Just insert b instead of $\overline{b}$ when the result would have too many 1s or too few 1s. For example, are the strings with n=4, ?=0 and u=2. This generalizes ‘cool-lex’ order by Ruskey and Williams (The coolest way to generate combinations, Discrete Mathematics) and we present two applications of our ‘cooler’ order. First, we give a loopless algorithm for generating binary strings with any weight range in which successive strings have Levenshtein distance two. Second, we construct de Bruijn sequences for (i) ?=0 and any u (maximum specified weight), (ii) any ? and u=n (minimum specified weight), and (iii) odd u?? (even size weight range). For example, all binary strings with n=6, ?=1, and u=4 appear once (cyclically) in . We also investigate the recursive structure of our order and show that it shares certain sublist properties with lexicographic order.  相似文献   

6.
Given a relation ?? ? ?? × ?? on a set ?? of objects and a set ?? of attributes, the AOC-poset (Attribute/Object Concept poset), is the partial order defined on the “introducers” of objects and attributes in the corresponding concept lattice. In this paper, we present Hermes, a simple and efficient algorithm for building an AOC-poset which runs in O(m i n{n m, n α }), where n is the number of objects plus the number of attributes, m is the size of the relation, and n α is the time required to perform matrix multiplication (currently α = 2.376). Finally, we compare the runtime of Hermes with the runtime of other algorithms computing the AOC-poset: Ares, Ceres and Pluton. We characterize the cases where each algorithm is the more relevant.  相似文献   

7.
The factorization algorithm of Pollard generates a sequence in ? n by $$x_0 : = 2;x_{i + 1} : = x_i^2 - 1(\bmod n),i = 1,2,3,...$$ wheren denotes the integer to be factored. The algorithm finds an factorp ofn within \(0\left( {\sqrt p } \right)\) macrosteps (=multiplications/divisions in ? n ) on average. An empirical analysis of the Pollard algorithm using modified sequences $$x_{i + 1} = b \cdot x_i^\alpha + c(\bmod n),i = 1,2,...$$ withx 0,b,c,α∈? and α≥2 shows, that a factorp ofn under the assumption gcd (α,p-1)≠1 now is found within $$0\left( {\sqrt {\frac{p}{{ged(\alpha ,p - 1}}} } \right)$$ macrosteps on average.  相似文献   

8.
We revisit the problem of finding \(k\) paths with a minimum number of shared edges between two vertices of a graph. An edge is called shared if it is used in more than one of the \(k\) paths. We provide a \({\lfloor {k/2}\rfloor }\) -approximation algorithm for this problem, improving the best previous approximation factor of \(k-1\) . We also provide the first approximation algorithm for the problem with a sublinear approximation factor of \(O(n^{3/4})\) , where \(n\) is the number of vertices in the input graph. For sparse graphs, such as bounded-degree and planar graphs, we show that the approximation factor of our algorithm can be improved to \(O(\sqrt{n})\) . While the problem is NP-hard, and even hard to approximate to within an \(O(\log n)\) factor, we show that the problem is polynomially solvable when \(k\) is a constant. This settles an open problem posed by Omran et al. regarding the complexity of the problem for small values of \(k\) . We present most of our results in a more general form where each edge of the graph has a sharing cost and a sharing capacity, and there is a vulnerability parameter \(r\) that determines the number of times an edge can be used among different paths before it is counted as a shared/vulnerable edge.  相似文献   

9.
We explore relationships between circuit complexity, the complexity of generating circuits, and algorithms for analyzing circuits. Our results can be divided into two parts:
  1. Lower bounds against medium-uniform circuits. Informally, a circuit class is “medium uniform” if it can be generated by an algorithmic process that is somewhat complex (stronger than LOGTIME) but not infeasible. Using a new kind of indirect diagonalization argument, we prove several new unconditional lower bounds against medium-uniform circuit classes, including: ? For all k, P is not contained in P-uniform SIZE(n k ). That is, for all k, there is a language \({L_k \in {\textsf P}}\) that does not have O(n k )-size circuits constructible in polynomial time. This improves Kannan’s lower bound from 1982 that NP is not in P-uniform SIZE(n k ) for any fixed k. ? For all k, NP is not in \({{\textsf P}^{\textsf NP}_{||}-{\textsf {uniform SIZE}}(n^k)}\) .This also improves Kannan’s theorem, but in a different way: the uniformity condition on the circuits is stronger than that on the language itself. ? For all k, LOGSPACE does not have LOGSPACE-uniform branching programs of size n k .
  2. Eliminating non-uniformity and (non-uniform) circuit lower bounds. We complement these results by showing how to convert any potential simulation of LOGTIME-uniform NC 1 in ACC 0/poly or TC 0/poly into a medium-uniform simulation using small advice. This lemma can be used to simplify the proof that faster SAT algorithms imply NEXP circuit lower bounds and leads to the following new connection: ? Consider the following task: given a TC 0 circuit C of n O(1) size, output yes when C is unsatisfiable, and output no when C has at least 2 n-2 satisfying assignments. (Behavior on other inputs can be arbitrary.) Clearly, this problem can be solved efficiently using randomness. If this problem can be solved deterministically in 2 n-ω(log n) time, then \({{\textsf{NEXP}} \not \subset {\textsf{TC}}^0/{\rm poly}}\) .
Another application is to derandomize randomized TC 0 simulations of NC 1 on almost all inputs: ?Suppose \({{\textsf{NC}}^1 \subseteq {\textsf{BPTC}}^0}\) . Then, for every ε > 0 and every language L in NC 1, there is a LOGTIME?uniform TC 0 circuit family of polynomial size recognizing a language L′ such that L and L′ differ on at most \({2^{n^{\epsilon}}}\) inputs of length n, for all n.  相似文献   

10.
We present a data structure that stores a sequence s[1..n] over alphabet [1..σ] in $n\mathcal{H}_{0}(s) + o(n)(\mathcal {H}_{0}(s){+}1)$ bits, where $\mathcal{H}_{0}(s)$ is the zero-order entropy of s. This structure supports the queries access, rank and select, which are fundamental building blocks for many other compressed data structures, in worst-case time ${\mathcal{O} ( {\lg\lg\sigma} )}$ and average time ${\mathcal{O} ( {\lg\mathcal{H}_{0}(s)} )}$ . The worst-case complexity matches the best previous results, yet these had been achieved with data structures using $n\mathcal{H}_{0}(s)+o(n\lg \sigma)$ bits. On highly compressible sequences the o(nlgσ) bits of the redundancy may be significant compared to the $n\mathcal{H}_{0}(s)$ bits that encode the data. Our representation, instead, compresses the redundancy as well. Moreover, our average-case complexity is unprecedented. Our technique is based on partitioning the alphabet into characters of similar frequency. The subsequence corresponding to each group can then be encoded using fast uncompressed representations without harming the overall compression ratios, even in the redundancy. The result also improves upon the best current compressed representations of several other data structures. For example, we achieve (i) compressed redundancy, retaining the best time complexities, for the smallest existing full-text self-indexes; (ii) compressed permutations π with times for π() and π ?1() improved to loglogarithmic; and (iii) the first compressed representation of dynamic collections of disjoint sets. We also point out various applications to inverted indexes, suffix arrays, binary relations, and data compressors. Our structure is practical on large alphabets. Our experiments show that, as predicted by theory, it dominates the space/time tradeoff map of all the sequence representations, both in synthetic and application scenarios.  相似文献   

11.
We relate the exponential complexities 2 s(k)n of $\textsc {$k$-sat}$ and the exponential complexity $2^{s(\textsc {eval}(\mathrm {\varPi }_{2} 3\textsc {-cnf}))n}$ of $\textsc {eval}(\mathrm {\varPi }_{2} 3\textsc {-cnf})$ (the problem of evaluating quantified formulas of the form $\forall\vec{x} \exists\vec{y} \textsc {F}(\vec {x},\vec{y})$ where F is a 3-cnf in $\vec{x}$ variables and $\vec{y}$ variables) and show that s(∞) (the limit of s(k) as k→∞) is at most $s(\textsc {eval}(\mathrm {\varPi }_{2} 3\textsc {-cnf}))$ . Therefore, if we assume the Strong Exponential-Time Hypothesis, then there is no algorithm for $\textsc {eval}(\mathrm {\varPi }_{2} 3\textsc {-cnf})$ running in time 2 cn with c<1. On the other hand, a nontrivial exponential-time algorithm for $\textsc {eval}(\mathrm {\varPi }_{2} 3\textsc {-cnf})$ would provide a $\textsc {$k$-sat}$ solver with better exponent than all current algorithms for sufficiently large k. We also show several syntactic restrictions of the evaluation problem $\textsc {eval}(\mathrm {\varPi }_{2} 3\textsc {-cnf})$ have nontrivial algorithms, and provide strong evidence that the hardest cases of $\textsc {eval}(\mathrm {\varPi }_{2} 3\textsc {-cnf})$ must have a mixture of clauses of two types: one universally quantified literal and two existentially quantified literals, or only existentially quantified literals. Moreover, the hardest cases must have at least n?o(n) universally quantified variables, and hence only o(n) existentially quantified variables. Our proofs involve the construction of efficient minimally unsatisfiable $\textsc {$k$-cnf}$ s and the application of the Sparsification lemma.  相似文献   

12.
We show that the promise problem of distinguishing n-bit strings of relative Hamming weight \({1/2 + \Omega(1/{\rm lg}^{d-1} n)}\) from strings of weight \({1/2 - \Omega(1/{\rm \lg}^{d - 1} n)}\) can be solved by explicit, randomized (unbounded fan-in) poly(n)-size depth-d circuits with error \({\leq 1/3}\) , but cannot be solved by deterministic poly(n)-size depth-(d+1) circuits, for every \({d \geq 2}\) ; and the depth of both is tight. Our bounds match Ajtai’s simulation of randomized depth-d circuits by deterministic depth-(d + 2) circuits (Ann. Pure Appl. Logic; ’83) and provide an example where randomization buys resources. To rule out deterministic circuits, we combine Håstad’s switching lemma with an earlier depth-3 lower bound by the author (Computational Complexity 2009). To exhibit randomized circuits, we combine recent analyses by Amano (ICALP ’09) and Brody and Verbin (FOCS ’10) with derandomization. To make these circuits explicit, we construct a new, simple pseudorandom generator that fools tests \({A_1 \times A_2 \times \cdots \times A_{{\rm lg}{n}}}\) for \({A_i \subseteq [n], |A_{i}| = n/2}\) with error 1/n and seed length O(lg n), improving on the seed length \({\Omega({\rm lg}\, n\, {\rm lg}\, {\rm lg}\, n)}\) of previous constructions.  相似文献   

13.
We introduce the space function s(n) of a finitely presented semigroup ${S =\langle A \mid R \rangle}$ . To define s(n) we consider pairs of words w,w′ over A of length at most n equal in S and use relations from R for the derivations ${w = w_0 \rightsquigarrow \dots \rightsquigarrow w_t = w'; s(n)}$ bounds from above the lengths of the words w i at intermediate steps, i.e., the space sufficient to implement all such transitions ${w \rightsquigarrow \dots \rightsquigarrow w'}$ . One of the results obtained is the following criterion: A finitely generated semigroup S has decidable word problem of polynomial space complexity if and only if S is a subsemigroup of a finitely presented semigroup H with polynomial space function.  相似文献   

14.
Let $\pi'_{w}$ denote the failure function of the Knuth-Morris-Pratt algorithm for a word w. In this paper we study the following problem: given an integer array $A'[1 \mathinner {\ldotp \ldotp }n]$ , is there a word w over an arbitrary alphabet Σ such that $A'[i]=\pi'_{w}[i]$ for all i? Moreover, what is the minimum cardinality of Σ required? We give an elementary and self-contained $\mathcal{O}(n\log n)$ time algorithm for this problem, thus improving the previously known solution (Duval et al. in Conference in honor of Donald E. Knuth, 2007), which had no polynomial time bound. Using both deeper combinatorial insight into the structure of π′ and advanced algorithmic tools, we further improve the running time to $\mathcal{O}(n)$ .  相似文献   

15.
The set of permutations of ??n??={1,??,n} in one-line notation is ??(n). The shorthand encoding of a 1?a n ????(n) is a 1?a n?1. A shorthand universal cycle for permutations (SP-cycle) is a circular string of length n! whose substrings of length n?1 are the shorthand encodings of ??(n). When an SP-cycle is decoded, the order of ??(n) is a Gray code in which successive permutations differ by the prefix-rotation ?? i =(1 2 ? i) for i??{n?1,n}. Thus, SP-cycles can be represented by n! bits. We investigate SP-cycles with maximum and minimum ??weight?? (number of ?? n?1s in the Gray code). An SP-cycle n a n b?n z is ??periodic?? if its ??sub-permutations?? a,b,??,z equal ??(n?1). We prove that periodic min-weight SP-cycles correspond to spanning trees of the (n?1)-permutohedron. We provide two constructions: B(n) and C(n). In B(n) the spanning trees use ??half-hunts?? from bell-ringing, and in C(n) the sub-permutations use cool-lex order by Williams (SODA, 987?C996, 2009). Algorithmic results are: (1)?memoryless decoding of B(n) and C(n), (2)?O((n?1)!)-time generation of B(n) and C(n) using sub-permutations, (3)?loopless generation of B(n)??s binary representation n bits at a time, and (4)?O(n+??(n))-time ranking of B(n)??s permutations where ??(n) is the cost of computing a permutation??s inversion vector. Results (1)?C(4) improve on those for the previous SP-cycle construction D(n) by Ruskey and Williams (ACM Trans. Algorithms 6(3):Art.?45, 2010), which we characterize here using ??recycling??.  相似文献   

16.
We report progress on the NL versus UL problem.
  • We show that counting the number of s-t paths in graphs where the number of s-v paths for any v is bounded by a polynomial can be done in FUL: the unambiguous log-space function class. Several new upper bounds follow from this including ${{{ReachFewL} \subseteq {UL}}}$ and ${{{LFew} \subseteq {UL}^{FewL}}}$
  • We investigate the complexity of min-uniqueness—a central notion in studying the NL versus UL problem. In this regard we revisit the class OptL[log n] and introduce UOptL[log n], an unambiguous version of OptL[log n]. We investigate the relation between UOptL[log n] and other existing complexity classes.
  • We consider the unambiguous hierarchies over UL and UOptL[log n]. We show that the hierarchy over UOptL[log n] collapses. This implies that ${{{ULH} \subseteq {L}^{{promiseUL}}}}$ thus collapsing the UL hierarchy.
  • We show that the reachability problem over graphs embedded on 3 pages is complete for NL. This contrasts with the reachability problem over graphs embedded on 2 pages, which is log-space equivalent to the reachability problem in planar graphs and hence is in UL.
  •   相似文献   

    17.
    We consider nonlinear boundary value problems with arbitrarily many solutionsuεC 2 [a, b]. In this paper an Algorithm will be established for a priori bounds \(\bar u,\bar d \in C[a,b]\) with the following properties:
    1. For every solutionu of the nonlinear problem we obtain $$\bar u(x) \leqslant u(x) \leqslant \bar u(x), - \bar d(x) \leqslant u'(x) \leqslant \bar d(x)$$ for any,xε[a, b].
    2. The bounds \(\bar u\) and % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmizayaara% aaaa!36EE!\[\bar d\] are defined by the use of the functions exp, sin and cos.
    3. We use neither the knowledge of solutions nor the number of solutions.
      相似文献   

    18.
    Vertex deletion and edge deletion problems play a central role in parameterized complexity. Examples include classical problems like Feedback Vertex Set, Odd Cycle Transversal, and Chordal Deletion. The study of analogous edge contraction problems has so far been left largely unexplored from a parameterized perspective. We consider two basic problems of this type: Tree Contraction and Path Contraction. These two problems take as input an undirected graph G on n vertices and an integer k, and the task is to determine whether we can obtain a tree or a path, respectively, by a sequence of at most k edge contractions in G. For Tree Contraction, we present a randomized 4 k ? n O(1) time polynomial-space algorithm, as well as a deterministic 4.98 k ? n O(1) time algorithm, based on a variant of the color coding technique of Alon, Yuster and Zwick. We also present a deterministic 2 k+o(k)+n O(1) time algorithm for Path Contraction. Furthermore, we show that Path Contraction has a kernel with at most 5k+3 vertices, while Tree Contraction does not have a polynomial kernel unless NP ? coNP/poly. We find the latter result surprising because of the connection between Tree Contraction and Feedback Vertex Set, which is known to have a kernel with 4k 2 vertices.  相似文献   

    19.
    We present a method depending on matrix continued fractions and Sturm's comparison theorem to obtain verified inclusions for eigenvalues of the underlying boundary value problem of the first-order phase locked loop equation $pu'' + (\lambda + \tilde g)u = 0$ ,p = 1/SNR with general phase detector characteristic $\tilde g(\phi )$ .  相似文献   

    20.
    We consider mining unusual patterns from a set  \(T\) of target texts. A typical method outputs unusual patterns if their observed frequencies are far from their expectation estimated under an assumed probabilistic model. However, it is difficult for the method to deal with the zero frequency and thus it suffers from data sparseness. We employ another set  \(B\) of background texts to define a composition  \(xy\) to be peculiar if both \(x\) and  \(y\) are more frequent in  \(B\) than in  \(T\) and conversely \(xy\) is more frequent in  \(T\) . \(xy\) is unusual because \(x\) and  \(y\) are infrequent in  \(T\) while \(xy\) is unexpectedly frequent compared to  \(xy\) in  \(B\) . To find frequent subpatterns and infrequent patterns simultaneously, we develop a fast algorithm using the suffix tree and show that it scales almost linearly under practical settings of parameters. Experiments using DNA sequences show that found peculiar compositions basically appear in rRNA while patterns found by an existing method seem not to relate to specific biological functions. We also show that discovered patterns have similar lengths at which the distribution of frequencies of fixed length substrings begins to skew. This fact explains why our method can find long peculiar compositions.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号