首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We present several variants of the sunflower conjecture of Erd?s & Rado (J Lond Math Soc 35:85–90, 1960) and discuss the relations among them. We then show that two of these conjectures (if true) imply negative answers to the questions of Coppersmith & Winograd (J Symb Comput 9:251–280, 1990) and Cohn et al. (2005) regarding possible approaches for obtaining fast matrix-multiplication algorithms. Specifically, we show that the Erd?s–Rado sunflower conjecture (if true) implies a negative answer to the “no three disjoint equivoluminous subsets” question of Coppersmith & Winograd (J Symb Comput 9:251–280, 1990); we also formulate a “multicolored” sunflower conjecture in ${\mathbb{Z}_3^n}$ and show that (if true) it implies a negative answer to the “strong USP” conjecture of Cohn et al. (2005) (although it does not seem to impact a second conjecture in Cohn et al. (2005) or the viability of the general group-theoretic approach). A surprising consequence of our results is that the Coppersmith–Winograd conjecture actually implies the Cohn et al. conjecture. The multicolored sunflower conjecture in ${\mathbb{Z}_3^n}$ is a strengthening of the well-known (ordinary) sunflower conjecture in ${\mathbb{Z}_3^n}$ , and we show via our connection that a construction from Cohn et al. (2005) yields a lower bound of (2.51 . . .) n on the size of the largest multicolored 3-sunflower-free set, which beats the current best-known lower bound of (2.21 . . . ) n Edel (2004) on the size of the largest 3-sunflower-free set in ${\mathbb{Z}_3^n}$ .  相似文献   

2.
We revisit from a fairness point of view the problem of online load balancing in the restricted assignment model and the 1-∞ model. We consider both a job-centric and a machine-centric view of fairness, as proposed by Goel et al. (In: Symposium on discrete algorithms, pp. 384–390, 2005). These notions are equivalent to the approximate notion of prefix competitiveness proposed by Kleinberg et al. (In: Proceedings of the 40th annual symposium on foundations of computer science, p. 568, 2001), as well as to the notion of approximate majorization, and they generalize the well studied notion of max-min fairness. We resolve a question posed by Goel et al. (In: Symposium on discrete algorithms, pp. 384–390, 2005) proving that the greedy strategy is globally O(log?m)-fair, where m denotes the number of machines. This result improves upon the analysis of Goel et al. (In: Symposium on discrete algorithms, pp. 384–390, 2005) who showed that the greedy strategy is globally O(log?n)-fair, where n is the number of jobs. Typically, n?m, and therefore our improvement is significant. Our proof matches the known lower bound for the problem with respect to the measure of global fairness. The improved bound is obtained by analyzing, in a more accurate way, the more general restricted assignment model studied previously in Azar et al. (J. Algorithms 18:221–237, 1995). We provide an alternative bound which is not worse than the bounds of Azar et al. (J. Algorithms 18:221–237, 1995), and it is strictly better in many cases. The bound we prove is, in fact, much more general and it bounds the load on any prefix of most loaded machines. As a corollary from this more general bound we find that the greedy algorithm results in an assignment that is globally O(log?m)-balanced. The last result generalizes the previous result of Goel et al. (In: Symposium on discrete algorithms, pp. 384–390, 2005) who proved that the greedy algorithm yields an assignment that is globally O(log?m)-balanced for the 1-∞ model.  相似文献   

3.
Given a DNF formula f on n variables, the two natural size measures are the number of terms or size s(f) and the maximum width of a term w(f). It is folklore that small DNF formulas can be made narrow: if a formula has m terms, it can be ${\epsilon}$ -approximated by a formula with width ${{\rm log}(m/{\epsilon})}$ . We prove a converse, showing that narrow formulas can be sparsified. More precisely, any width w DNF irrespective of its size can be ${\epsilon}$ -approximated by a width w DNF with at most ${(w\, {\rm log}(1/{\epsilon}))^{O(w)}}$ terms. We combine our sparsification result with the work of Luby & Velickovic (1991, Algorithmica 16(4/5):415–433, 1996) to give a faster deterministic algorithm for approximately counting the number of satisfying solutions to a DNF. Given a formula on n variables with poly(n) terms, we give a deterministic ${n^{\tilde{O}({\rm log}\, {\rm log} (n))}}$ time algorithm that computes an additive ${\epsilon}$ approximation to the fraction of satisfying assignments of f for ${\epsilon = 1/{\rm poly}({\rm log}\, n)}$ . The previous best result due to Luby and Velickovic from nearly two decades ago had a run time of ${n^{{\rm exp}(O(\sqrt{{\rm log}\, {\rm log} n}))}}$ (Luby & Velickovic 1991, in Algorithmica 16(4/5):415–433, 1996).  相似文献   

4.
In a very recent paper, Peng and Liu (Neural Comput Appl 20:543–547, 2011) investigated the pth moment stability of the stochastic Grossberg–Hopfield neural networks with Markov volatilities by Mao et al. (Bernoulli 6:73–90, 2000, Theorem 4.1). We should point out that Mao et al. (Bernoulli 6:73–90, 2000, Theorem 4.1) investigated the pth moment exponentially stable for a class of stochastic dynamical systems with constant delay; however, this theorem cannot apply to the case of variable time delays. It is also worthy to emphasize that Peng and Liu (Neural Comput Appl 20:543–547, 2011) discussed by Mao et al. (Bernoulli 6:73–90, 2000, Theorem 4.1) the pth moment exponentially stable for the Grossberg–Hopfield neural networks with variable delays, and therefore, there are some gaps between Peng and Liu (Neural Comput Appl 20:543–547, 2011, Theorem 1) and Mao et al. (Bernoulli 6:73–90, 2000, Theorem 4.1). In this paper, we fill up this gap. Moreover, a numerical example is also provided to demonstrate the effectiveness and applicability of the theoretical results.  相似文献   

5.
This paper proposes an iterative sealed-bid auction for selling multiple heterogeneous items to bidders interested in buying at most one item. It generalizes the single item bisection auction (Grigorieva et al. Econ Theory, 30:107–118, 2007) to the environment with multiple heterogeneous items. We focus on the case with two items for sale. We show that the auction elicits a minimal amount of information on preferences required to find the Vickrey–Clark–Groves outcome (Clarke, Public Choice, XI:17–33, 1971; Groves, Econometrica, 61:617–631, 1973; Vickrey, J Finance, 16:8–37, 1961), when there are two items for sale and an arbitrary number of bidders.  相似文献   

6.
Given natural limitations on the length DNA sequences, designing phylogenetic reconstruction methods which are reliable under limited information is a crucial endeavor. There have been two approaches to this problem: reconstructing partial but reliable information about the tree (Mossel in IEEE Comput. Biol. Bioinform. 4:108–116, 2007; Daskalakis et al. in SIAM J. Discrete Math. 25:872–893, 2011; Daskalakis et al. in Proc. of RECOMB 2006, pp. 281–295, 2006; Gronau et al. in Proc. of the 19th Annual SODA 2008, pp. 379–388, 2008), and reaching “deeper” in the tree through reconstruction of ancestral sequences. In the latter category, Daskalakis et al. (Proc. of the 38th Annual STOC, pp. 159–168, 2006) settled an important conjecture of M. Steel (My favourite conjecture. Preprint, 2001), showing that, under the CFN model of evolution, all trees on n leaves with edge lengths bounded by the Ising model phase transition can be recovered with high probability from genomes of length O(logn) with a polynomial time algorithm. Their methods had a running time of O(n 10). Here we enhance our methods from Daskalakis et al. (Proc. of RECOMB 2006, pp. 281–295, 2006) with the learning of ancestral sequences and provide an algorithm for reconstructing a sub-forest of the tree which is reliable given available data, without requiring a-priori known bounds on the edge lengths of the tree. Our methods are based on an intuitive minimum spanning tree approach and run in O(n 3) time. For the case of full reconstruction of trees with edges under the phase transition, we maintain the same asymptotic sequence length requirements as in Daskalakis et al. (Proc. of the 38th Annual STOC, pp. 159–168, 2006), despite the considerably faster running time.  相似文献   

7.
An ongoing line of research has shown super-polynomial lower bounds for uniform and slightly-non-uniform small-depth threshold and arithmetic circuits (Allender, in Chicago J. Theor. Comput. Sci. 1999(7), 1999; Koiran and Perifel, in Proceedings of the 24th Annual IEEE Conference on Computational Complexity (CCC 2009), pp. 35–40, 2009; Jansen and Santhanam, in Proceedings of the 38th International Colloquium on Automata, Languages and Programming (ICALP 2011), I, pp. 724–735, 2011). We give a unified framework that captures and improves each of the previous results. Our main results are that Permanent does not have threshold circuits of the following kinds.
  1. Depth O(1), n o(1) bits of non-uniformity, and size n O(1).
  2. Depth O(1), polylog(n) bits of non-uniformity, and size s(n) such that for all constants c the c-fold composition of s, s (c)(n), is less than 2 n .
  3. Depth o(loglogn), polylog(n) bits of non-uniformity, and size n O(1).
(1) strengthens a result of Jansen and Santhanam (Jansen and Santhanam, in Proceedings of the 38th International Colloquium on Automata, Languages and Programming (ICALP 2011), I, pp. 724–735, 2011), who obtained similar parameters but for arithmetic circuits of constant depth rather than Boolean threshold circuits. (2) and (3) strengthen results of Allender (Allender, in Chicago J. Theor. Comput. Sci. 1999(7), 1999) and Koiran and Perifel (Koiran and Perifel, in Proceedings of the 24th Annual IEEE Conference on Computational Complexity (CCC 2009), pp. 35–40, 2009), respectively, who obtained results with similar parameters but for completely uniform circuits. Our main technical contribution is to simplify and unify earlier proofs in this area, and adapt the proofs to handle some amount of non-uniformity. We also develop a notion of circuits with a small amount of non-uniformity that naturally interpolates between fully uniform and fully non-uniform circuits. We use this notion, which we term weak uniformity, rather than the earlier and essentially equivalent notion of succinctness used by Jansen and Santhanam because the notion of weak uniformity more fully and easily interpolates between full uniformity and non-uniformity of circuits.  相似文献   

8.
This paper investigates the problem of the pth moment exponential stability for a class of stochastic recurrent neural networks with Markovian jump parameters. With the help of Lyapunov function, stochastic analysis technique, generalized Halanay inequality and Hardy inequality, some novel sufficient conditions on the pth moment exponential stability of the considered system are derived. The results obtained in this paper are completely new and complement and improve some of the previously known results (Liao and Mao, Stoch Anal Appl, 14:165–185, 1996; Wan and Sun, Phys Lett A, 343:306–318, 2005; Hu et al., Chao Solitions Fractals, 27:1006–1010, 2006; Sun and Cao, Nonlinear Anal Real, 8:1171–1185, 2007; Huang et al., Inf Sci, 178:2194–2203, 2008; Wang et al., Phys Lett A, 356:346–352, 2006; Peng and Liu, Neural Comput Appl, 20:543–547, 2011). Moreover, a numerical example is also provided to demonstrate the effectiveness and applicability of the theoretical results.  相似文献   

9.
Matthias Möller 《Computing》2013,95(5):425-448
This paper is concerned with the extension of the algebraic flux-correction (AFC) approach (Kuzmin in Computational fluid and solid mechanics, Elsevier, Amsterdam, pp 887–888, 2001; J Comput Phys 219:513–531, 2006; Comput Appl Math 218:79–87, 2008; J Comput Phys 228:2517–2534, 2009; Flux-corrected transport: principles, algorithms, and applications, 2nd edn. Springer, Berlin, pp 145–192, 2012; J Comput Appl Math 236:2317–2337, 2012; Kuzmin et al. in Comput Methods Appl Mech Eng 193:4915–4946, 2004; Int J Numer Methods Fluids 42:265–295, 2003; Kuzmin and Möller in Flux-corrected transport: principles, algorithms, and applications. Springer, Berlin, 2005; Kuzmin and Turek in J Comput Phys 175:525–558, 2002; J Comput Phys 198:131–158, 2004) to nonconforming finite element methods for the linear transport equation. Accurate nonoscillatory approximations to convection-dominated flows are obtained by stabilizing the continuous Galerkin method by solution-dependent artificial diffusion. Its magnitude is controlled by a flux limiter. This concept dates back to flux-corrected transport schemes. The unique feature of AFC is that all information is extracted from the system matrices which are manipulated to satisfy certain mathematical constraints. AFC schemes have been devised with conforming $P_1$ and $Q_1$ finite elements in mind but this is not a prerequisite. Here, we consider their extension to the nonconforming Crouzeix–Raviart element (Crouzeix and Raviart in RAIRO R3 7:33–76, 1973) on triangular meshes and its quadrilateral counterpart, the class of rotated bilinear Rannacher–Turek elements (Rannacher and Turek in Numer Methods PDEs 8:97–111, 1992). The underlying design principles of AFC schemes are shown to hold for (some variant of) both elements. However, numerical tests for a purely convective flow and a convection–diffusion problem demonstrate that flux-corrected solutions are overdiffusive for the Crouzeix–Raviart element. Good resolution of smooth and discontinuous profiles is attested to $Q_1^\mathrm{nc}$ approximations on quadrilateral meshes. A synthetic benchmark is used to quantify the artificial diffusion present in conforming and nonconforming high-resolution schemes of AFC-type. Finally, the implementation of efficient sparse matrix–vector multiplications is addressed.  相似文献   

10.
11.
The class ${\mathcal{SLUR}}$ (Single Lookahead Unit Resolution) was introduced in Schlipf et al. (Inf Process Lett 54:133–137, 1995) as an umbrella class for efficient (poly-time) SAT solving, with linear-time SAT decision, while the recognition problem was not considered. ?epek et al. (2012) and Balyo et al. (2012) extended this class in various ways to hierarchies covering all of CNF (all clause-sets). We introduce a hierarchy ${\mathcal{SLUR}}_k$ which we argue is the natural “limit” of such approaches. The second source for our investigations is the class ${\mathcal{UC}}$ of unit-refutation complete clause-sets, introduced in del Val (1994) as a target class for knowledge compilation. Via the theory of “hardness” of clause-sets as developed in Kullmann (1999), Kullmann (Ann Math Artif Intell 40(3–4):303–352, 2004) and Ansótegui et al. (2008) we obtain a natural generalisation ${\mathcal{UC}}_k$ , containing those clause-sets which are “unit-refutation complete of level k”, which is the same as having hardness at most k. Utilising the strong connections to (tree-)resolution complexity and (nested) input resolution, we develop basic methods for the determination of hardness (the level k in ${\mathcal{UC}}_k$ ). A fundamental insight now is that ${\mathcal{SLUR}}_k = {\mathcal{UC}}_k$ holds for all k. We can thus exploit both streams of intuitions and methods for the investigations of these hierarchies. As an application we can easily show that the hierarchies from ?epek et al. (2012) and Balyo et al. (2012) are strongly subsumed by ${\mathcal{SLUR}}_k$ . Finally we consider the problem of “irredundant” clause-sets in ${\mathcal{UC}}_k$ . For 2-CNF we show that strong minimisations are possible in polynomial time, while already for (very special) Horn clause-sets minimisation is NP-complete. We conclude with an extensive discussion of open problems and future directions. We envisage the concepts investigated here to be the starting point for a theory of good SAT translations, which brings together the good SAT-solving aspects from ${\mathcal{SLUR}}$ together with the knowledge-representation aspects from ${\mathcal{UC}}$ , and expands this combination via notions of “hardness”.  相似文献   

12.
We propose a uniform method to encode various types of trees succinctly. These families include ordered (ordinal), k-ary (cardinal), and unordered (free) trees. We will show the approach is intrinsically suitable for obtaining entropy-based encodings of trees (such as the degree-distribution entropy). Previously-existing succinct encodings of trees use ad hoc techniques to encode each particular family of trees. Additionally, the succinct encodings obtained using the uniform approach improve upon the existing succinct encodings of each family of trees; in the case of ordered trees, it simplifies the encoding while supporting the full set of navigational operations. It also simplifies the implementation of many supported operations. The approach applied to k-ary trees yields a succinct encoding that supports both cardinal-type operations (e.g. determining the child label i) as well as the full set of ordinal-type operations (e.g. reporting the number of siblings to the left of a node). Previous work on succinct encodings of k-ary trees does not support both types of operations simultaneously (Benoit et al. in Algorithmica 43(4):275–292, 2005; Raman et al. in ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 233–242, 2002). For unordered trees, the approach achieves the first succinct encoding. The approach is based on two recursive decompositions of trees into subtrees. Recursive decomposition of a structure into substructures is a common technique in succinct encodings and has even been used to encode (ordered) trees (Geary et al. in ACM Trans. Algorithms 2(4):510–534, 2006; He et al. in ICALP, pp. 509–520, 2007) and dynamic binary trees (Munro et al. in ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 529–536, 2001; Storm in Representing dynamic binary trees succinctly, Master’s thesis, 2000). The main distinction of the approach in this paper is that a tree is decomposed into subtrees in a manner that the subtrees are maximally isolated from each other. This intermediate decomposition result is interesting in its own right and has proved useful in other applications (Farzan et al. in ICALP (1), pp. 451–462, 2009; Farzan and Munro in ICALP (1), pp. 439–450, 2009; Farzan and Kamali in ICALP, 2011).  相似文献   

13.
Teachers and students face many challenges in shifting from traditional classroom cultures to enacting the Knowledge-Building Communities model (KBC model) supported by the CSCL environment, Knowledge Forum (Bereiter, 2002; Bereiter & Scardamalia, 1993; Scardamalia, 2002; Scardamalia & Bereiter, 2006). Enacting the model involves socializing students into knowledge work, similar to disciplinary communities. A useful construct in the field of the Learning Sciences for understanding knowledge work is “epistemic games” (Collins & Ferguson, 1993; Morrison & Collins 1995; Perkins, 1997). We propose that a powerful means for supporting classroom enactments of the KBC model entails conceptualizing Knowledge Forum as a collective space for playing multi-player epistemic games. Participation in knowledge-building communities is then scaffolded through learning the moves of such games. We have designed scaffolding tools that highlight particular knowledge-building moves for practice and reflection as a means of supporting students and teachers in coming to understand how to collectively work together toward the progressive improvement of ideas. In order to examine our design theories in practice, we present research on Ideas First, a design-based research program involving enactments of the KBC model in Singaporean primary science classrooms (Bielaczyc & Ow, 2007, 2010; Ow & Bielaczyc, 2007; 2008).  相似文献   

14.
In this paper, inspired by some types of $BL$ -algebra filters (deductive systems) introduced in Haveshki et al. (Soft Comput 10:657–664, 2006), Kondo and Dudek (Soft Comput 12:419–423, 2008) and Turunen (Arch Math Log 40:467–473, 2001), we defined residuated lattice versions of them and study them in connection with Van Gasse et al. (Inf Sci 180(16):3006–3020, 2010), Lianzhen and Kaitai (Inf Sci 177:5725–5738, 2007), Zhu and Xu (Inf Sci 180:3614–3632, 2010). Also we consider some relations between these filters and quotient residuated lattice that are constructed via these filters.  相似文献   

15.
In this document, we present an alternative to the method introduced by Ebner (Pattern Recognit 60–67, 2003; J Parallel Distrib Comput 64(1):79–88, 2004; Color constancy using local color shifts, pp 276–287, 2004; Color Constancy, 2007; Mach Vis Appl 20(5):283–301, 2009) for computing the local space average color. We show that when the problem is framed as a linear system and the resulting series is solved, there is a solution based on LU decomposition that reduces the computing time by at least an order of magnitude.  相似文献   

16.
We consider the problem of doing fast and reliable estimation of the number z of non-zero entries in a sparse boolean matrix product. This problem has applications in databases and computer algebra. Let n denote the total number of non-zero entries in the input matrices. We show how to compute a 1±ε approximation of z (with small probability of error) in expected time for any $\varepsilon> 4/\sqrt[4]{z}$ . The previously best estimation algorithm, due to Cohen (J. Comput. Syst. Sci. 53(3):441–453, 1997), uses time . We also present a variant using I/Os in expectation in the cache-oblivious model. In contrast to these results, the currently best algorithms for computing a sparse boolean matrix product use time ω(n 4/3) (resp. ω(n 4/3/B) I/Os), even if the result matrix is restricted to nonzero entries. Our algorithm combines the size estimation technique of Bar-Yossef et al. (Proceedings of the 6th International Workshop on Randomization and Approximation Techniques (RANDOM ’02), pp. 1–10, 2002) with a particular class of pairwise independent hash functions that allows the sketch of a set of the form to be computed in expected time and I/Os. We then describe how sampling can be used to maintain (independent) sketches of matrices that allow estimation to be performed in time o(n) if z is sufficiently large. This gives a simpler alternative to the sketching technique of Ganguly et al. (Proceedings of the 24th ACM Symposium on Principles of Database Systems (PODS ’05), pp. 259–270, 2005), and matches a space lower bound shown in that paper. Finally, we present experiments on real-world data sets that show the accuracy of both our methods to be significantly better than the worst-case analysis predicts.  相似文献   

17.
The Parameterized Complexity of Unique Coverage and Its Variants   总被引:1,自引:0,他引:1  
In this paper we study the parameterized complexity of the Unique Coverage problem, a variant of the classic Set Cover problem. This problem admits several parameterizations and we show that all, except the standard parameterization and a generalization of it, are unlikely to be fixed-parameter tractable. We use results from extremal combinatorics to obtain the best-known kernel for Unique Coverage and the well-known color-coding technique of Alon et al. (J. ACM 42(4), 844–856, 1995) to show that a weighted version of this problem is fixed-parameter tractable. Our application of color-coding uses an interesting variation of s-perfect hash families called (k,s)-hash families which were studied by Alon et al. (J. Comb. Theory Ser. A 104(1), 207–215, 2003) in the context of a class of codes called parent identifying codes (Barg et al. in SIAM J. Discrete Math. 14(3), 423–431, 2001). To the best of our knowledge, this is the first application of (k,s)-hash families outside the domain of coding theory. We prove the existence of such families of size smaller than the best-known s-perfect hash families using the probabilistic method (Alon and Spencer in The Probabilistic Method, Wiley, New York, 2000). Explicit constructions of such families of size promised by the probabilistic method is open.  相似文献   

18.
19.
A space-bounded Stack Machine is a regular Turing Machine with a read-only input tape, several space-bounded read-write work tapes, and an unbounded stack. Stack Machines with a logarithmic space bound have been connected to other classical models of computation, such as polynomial-time Turing Machines (P) (Cook in J Assoc Comput Mach 18:4–18, 1971) and polynomial size, polylogarithmic depth, bounded fan-in circuits (NC) e.g., Borodin et al. (SIAM J Comput 18, 1989). In this paper, we present significant new lower bounds and techniques for Stack Machines. This comes in the form of a trade-off lower bound between space and number of passes over the input tape. Specifically, we give an explicit permuted inner product function such that any Stack Machine computing this function requires either ${\Omega (N^{1/4 - \epsilon})}$ space or ${\Omega (N^{1/4 - \epsilon})}$ number of passes for every constant ${\epsilon > 0}$ , where N is the input size. In the case of logarithmic space Stack Machines, this yields an unconditional ${\Omega (N^{1/4 - \epsilon})}$ lower bound for the number of passes. To put this result in perspective, we note that Stack Machines with logarithmic space and a single pass over the input can compute Parity, Majority, as well as certain languages outside NC. The latter follows from Allender (J Assoc Comput Mach 36:912–928, 1989), conditional on the widely believed complexity assumption that PSPACE ${\subsetneq}$ EXP. Our technique is a novel communication complexity reduction, thereby extending the already wide range of models of computation for which communication complexity can be used to obtain lower bounds. Informally, we show that a k-player number-in-hand (NIH) communication protocol for a base function f can efficiently simulate a space- and pass-bounded Stack Machine for a related function F, which consists of several “permuted” instances of f, bundled together by a combining function h. Trade-off lower bounds for Stack Machines then follow from known communication complexity lower bounds. The framework for this reduction was given by Beame & Huynh-Ngoc (2008), who used it to obtain similar trade-off lower bounds for Turing Machines with a constant number of pass-bounded external tapes. We also prove that the latter cannot efficiently simulate Stack Machines, conditional on the complexity assumption that E ${\not \subset}$ PSPACE. It is the treatment of an unbounded stack which constitutes the main technical novelty in our communication complexity reduction.  相似文献   

20.
Numerous sophisticated local algorithm were suggested in the literature for various fundamental problems. Notable examples are the MIS and $(\Delta +1)$ -coloring algorithms by Barenboim and Elkin (Distrib Comput 22(5–6):363–379, 2010), by Kuhn (2009), and by Panconesi and Srinivasan (J Algorithms 20(2):356–374, 1996), as well as the $O\mathopen {}(\Delta ^2)$ -coloring algorithm by Linial (J Comput 21:193, 1992). Unfortunately, most known local algorithms (including, in particular, the aforementioned algorithms) are non-uniform, that is, local algorithms generally use good estimations of one or more global parameters of the network, e.g., the maximum degree $\Delta $ or the number of nodes $n$ . This paper provides a method for transforming a non-uniform local algorithm into a uniform one. Furthermore, the resulting algorithm enjoys the same asymptotic running time as the original non-uniform algorithm. Our method applies to a wide family of both deterministic and randomized algorithms. Specifically, it applies to almost all state of the art non-uniform algorithms for MIS and Maximal Matching, as well as to many results concerning the coloring problem (In particular, it applies to all aforementioned algorithms). To obtain our transformations we introduce a new distributed tool called pruning algorithms, which we believe may be of independent interest.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号