首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
The adenovirus type 5 (Ad5) early 1B 55-kDa protein (E1B-55kDa) is a multifunctional phosphoprotein that regulates viral DNA replication and nucleocytoplasmic RNA transport in lytically infected cells. In addition, E1B-55kDa provides functions required for complete oncogenic transformation of rodent cells in cooperation with the E1A proteins. Using the far-Western technique, we have isolated human genes encoding E1B-55kDa-associated proteins (E1B-APs). The E1B-AP5 gene encodes a novel nuclear RNA-binding protein of the heterogeneous nuclear ribonucleoprotein (hnRNP) family that is highly related to hnRNP-U/SAF-A. Immunoprecipitation experiments indicate that two distinct segments in the 55-kDa polypeptide which partly overlap regions responsible for p53 binding are required for complex formation with E1B-AP5 in Ad-infected cells and that this protein interaction is modulated by the adenovirus E4orf6 protein. Expression of E1B-AP5 efficiently interferes with Ad5 E1A/E1B-mediated transformation of primary rat cells. Furthermore, stable expression of E1B-AP5 in Ad-infected cells overcomes the E1B-dependent inhibition of cytoplasmic host mRNA accumulation. These data suggest that E1B-AP5 might play a role in RNA transport and that this function is modulated by E1B-55kDa in Ad-infected cells.  相似文献   

3.
Cleavage sites of nine bacterial restriction endonucleases were mapped in the DNA of adenovirus type 3 (Ad3) and Ad7, representative serotypes of the "weakly oncogenic" subgroup B human adenoviruses. Of 94 sites mapped, 82 were common to both serotypes, in accord with the high overall sequence homology of DNA among members of the same subgroups. Of the sites in Ad3 and Ad7 DNA, fewer than 20% corresponded to mapped restriction sites in the DNA of Ad2 or Ad5. The latter serotypes represent the "nononcogenic" subgroup C, having only 10 to 20% overall sequence homology with the DNA of subgroup B adenoviruses. Hybridization mapping of viral mRNA from Ad7-infected cells resulted in a complex physical map that was nearly identical to the map of early and late gene clusters in Ad2 DNA. Thus the DNA sequences of human adenoviruses of subgroups B and C have significantly diverged in the course of viral evolution, but the complex organization of the adenovirus genome has been rigidly conserved.  相似文献   

4.
5.
The ability of the adenovirus type 5 E1B 55-kDa mutants dl1520 and dl338 to replicate efficiently and independently of the cell cycle, to synthesis viral DNA, and to lyse infected cells did not correlate with the status of p53 in seven cell lines examined. Rather, cell cycle-independent replication and virus-induced cell killing correlated with permissivity to viral replication. This correlation extended to S-phase HeLa cells, which were more susceptible to virus-induced cell killing by the E1B 55-kDa mutant virus than HeLa cells infected during G1. Wild-type p53 had only a modest effect on E1B mutant virus yields in H1299 cells expressing a temperature-sensitive p53 allele. The defect in E1B 55-kDa mutant virus replication resulting from reduced temperature was as much as 10-fold greater than the defect due to p53 function. At 39 degreesC, the E1B 55-kDa mutant viruses produced wild-type yields of virus and replicated independently of the cell cycle. In addition, the E1B 55-kDa mutant viruses directed the synthesis of late viral proteins to levels equivalent to the wild-type virus level at 39 degreesC. We have previously shown that the defect in mutant virus replication can also be overcome by infecting HeLa cells during S phase. Taken together, these results indicate that the capacity of the E1B 55-kDa mutant virus to replicate independently of the cell cycle does not correlate with the status of p53 but is determined by yet unidentified mechanisms. The cold-sensitive nature of the defect of the E1B 55-kDa mutant virus in both late gene expression and cell cycle-independent replication leads us to speculate that these functions of the E1B 55-kDa protein may be linked.  相似文献   

6.
The adenovirus (Ad) fiber protein largely determines viral tropism through interaction with specific cell surface receptors. This molecule may also be involved in virion assembly or maturation, as some previously characterized fiber mutants were defective for processing of viral structural proteins. We previously described packaging cell lines that express Ad type 5 (Ad5) fiber and can complement the temperature-sensitive Ad fiber mutant H5ts142. We have now used these packaging cells to construct a new adenoviral vector (Ad5.betagal.DeltaF) with E1, E3, and L5 (fiber) deleted and analyzed the fiber null phenotype. Ad5.betagal.DeltaF growth was completely helper independent, and fiberless particles were produced by a single final round of growth in 293 cells. Cryoelectron microscopic studies and sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis showed that the structure and composition of these particles was nearly identical to those of first-generation Ad vectors. As expected, fiberless particles had reduced infectivity on epithelial cells, but they retained the ability to infect monocytic cells via an integrin-dependent pathway. These studies provide a novel approach to developing retargeted Ad gene therapy vectors.  相似文献   

7.
The human adenovirus 5 E1B 55-kDa protein is required for efficient nucleocytoplasmic transport of late viral mRNAs. This protein is shown to have RNA-binding activity which maps to a region of the protein with homology to a family of RNA-binding proteins and which has been shown previously to be essential for functionality of the protein in vivo.  相似文献   

8.
I have analyzed viral gene products expressed in five adenovirus type 2 (Ad2)- cytoplasmic, viral RNA which was selected by hybridization to cloned restriction endonuclease fragments of Ad2 DNA. Proteins synthesized in vitro were analyzed by electrophoresis in sodium dodecyl sulfate-polyacrylamide gels and compared with those directed by RNAs prepared from productively infected cells. The early regions E1 and E4 of adenovirus type 2 (Ad2) were found to be expressed in all of five Ad2-transformed hamster embryo cells lines. RNA transcribed from early region E2, which codes for the 72,000-molecular-weight (72K) DNA-binding protein was detected in cell line HE1 only, and early region E3 was expressed exclusively in cell line HE4. RNA transcribed from the region between approximately 12 and 35 map units, coding for immediate early (13.5K, 52/53K) and immediate early proteins (13.6K, 16K, 17K, 87K), as well as RNA from late genes, was not found in any of the cell lines HE1 to HE5 had electrophoretic mobilities similar to those programmed by RNA from productively infected cells.  相似文献   

9.
Mutants of type 5 adenovirus (Ad5) with reiterated DNA sequences in the E1a region appeared in a human T-lymphocyte cell line, Molt-4, persistently infected with H5sub304, a deletion/substitution mutant that has a wild-type phenotype in viral replication. Endonuclease analyses and DNA sequencing revealed DNA reiteration in each mutant. In the four representative mutants investigated, the DNA reiterations all started within a six-base-pair consensus sequence, G(or C)CTGTG, located in the second exon of the E1a region (at nt 1333, 1367, or 1419). There was not any DNA homology between the breakpoints in the second exon and the inserting sequences (starting at nt 532, 710, or 792). Northern analyses suggested that the reiterated splicing sites of the representative mutants were all used in RNA splicing, and the closest donor and recipient joints were used most frequently. These observations imply that during persistent infection Ad5 underwent spontaneous mutations by sequence-specific breakage and nonhomologous end-end joining recombination events. These E1a reiteration mutants could be propagated in HeLa, A549, and KB cells; they were genetically stable; and they killed CREF cells at a strikingly high frequency. Preliminary observations tend to correlate this CREF cell killing with the accumulation of the early viral proteins and/or viral DNA in the infected cells. This degree of cell damage was not observed in Ad5wt or H5sub304 infection of CREF cells. The observed E1a reiterations provide a model to gain insight into understanding the evolutionary events of some, if not all, adenovirus types during many years of symbiotic, persistent relationship in human tonsils and adenoids and possibly other lymphoid organs.  相似文献   

10.
The 34-kDa early-region 4 open reading frame 6 (E4orf6) product of human adenovirus type 5 forms complexes with both the cellular tumor suppressor p53 and the viral E1B 55-kDa protein (E1B-55kDa). E4orf6 can inhibit p53 transactivation activity, as can E1B-55kDa, and in combination these viral proteins cause the rapid turnover of p53. In addition, E4orf6-55kDa complexes play a critical role at later times in the regulation of viral mRNA transport and shutoff of host cell protein synthesis. In the present study, we have further characterized some of the biological properties of E4orf6. Analysis of extracts from infected cells by Western blotting indicated that E4orf6, like E1A and E1B products, is present at high levels until very late times, suggesting that it is available to act throughout the infectious cycle. This pattern is similar to that of E4orf4 but differs markedly from that of another E4 product, E4orf6/7, which is present only transiently. Synthesis of E4orf6 is maximal at early stages but ceases completely with the onset of shutoff of host protein synthesis; however, it was found that unlike E4orf6/7, E4orf6 is very stable, thus allowing high levels to be maintained even at late times. E4orf6 was shown to be phosphorylated at low levels. Coimmunoprecipitation studies in cells lacking p53 indicated that E4orf6 interacts with a number of other proteins. Five of these were shown to be viral or virally induced proteins ranging in size from 102 to 27 kDa, including E1B-55kDa. One such species, of 72 kDa, was shown not to represent the E2 DNA-binding protein and thus remains to be identified. Another appeared to be the L4 100-kDa nonstructural adenovirus late product, but it appeared to be present nonspecifically and not as part of an E4orf6 complex. Apart from p53, three additional cellular proteins, of 84, 19, and 14 kDa were detected by using an adenovirus vector that expresses only E4orf6. The 19-kDa species and a 16-kDa cellular protein were also shown to interact with E4orf6/7. It is possible that complex formation with these viral and cellular proteins plays a role in one or more of the biological activities associated with E4orf6 and E4orf6/7.  相似文献   

11.
Infection of KB cells at 39.5 degrees C with H5ts147, a temperature-sensitive (ts) mutant of type 5 adenovirus, resulted in the cytoplasmic accumulation of hexon antigen; all other virion proteins measured, however, were normally transported into the nucleus. Immunofluorescence techniques were used to study the intracellular location of viral proteins. Genetic studies revealed that H5ts147 was the single member of a nonoverlapping complementation group and occupied a unique locus on the adenovirus genetic map, distinct from mutants that failed to produce immunologically reactive hexons at 39.5 degrees C ("hexon-minus" mutants). Sedimentation studies of extracts of H5ts147-infected cells cultured and labeled at 39.5 degrees C revealed the production of 12S hexon capsomers (the native, trimeric structures), which were immunoprecipitable to the same extent as hexons synthesized in wild type (WT)-infected cells. In contrast, only 3.4S polypeptide chains were found in extracts of cells infected with the class of mutants unable to produce immunologically reactive hexon protein at 39.5 degrees C. Hexons synthesized in H5ts147-infected cells at 39.5 degrees C were capable of being assembled into virions, to the same extent as hexons synthesized in WT-infected cells, when the temperature was shifted down to the permissive temperature, 32 degrees C. Infectious virus production was initiated within 2 to 6 h after shift-down to 32 degrees C; de novo protein synthesis was required to allow this increase in viral titer. If ts147-infected cells were shifted up to 39.5 degrees C late in the viral multiplication cycle, viral production was arrested within 1 to 2 h. The kinetics of shutoff was similar to that of a WT-infected culture treated with cycloheximide at the time of shift-up. The P-VI nonvirion polypeptide, the precursor to virion protein VI, was unstable at 39.5 degrees C, whereas the hexon polypeptide was not degraded during the chase. It appears that there is a structural requirement for the transport of hexons into the nucleus more stringent than the acquisition of immunological reactivity and folding into the 12S form.  相似文献   

12.
We have identified the herpes simplex virus type 2 (HSV-2) UL4 gene product using a rabbit polyclonal antiserum raised against a recombinant 6xHis-UL4 fusion protein expressed in Escherichia coli. The antiserum reacted specifically with a 27-kDa protein in HSV-2 186-infected cell lysates. The protein was not detectable in the presence of the viral DNA synthesis inhibitor, suggesting that the UL4 gene was expressed as a gamma 2 gene. Indirect immunofluorescence studies localized the UL4 protein within the nucleus as discrete punctate forms at late times postinfection. However, when expressed in the absence of other viral proteins, the UL4 protein was limited to the cytoplasm, indicating that an interaction with one or more other virus-induced proteins was responsible for the nuclear localization during infection. Subnuclear fractionation studies showed that the protein was released from the nuclear structure of infected cells by high salt treatment. Moreover, the UL4 protein was detected in purified virions and light particles.  相似文献   

13.
From previous studies on the induction of DNA synthesis in quiescent primary baby rat kidney cells by adenovirus type 5 (Ad5) E1A deletion mutants, we concluded that induction is prevented only when cellular proteins p300 and pRb are both uncomplexed with E1A (J.A. Howe, J.S. Mymryk, C. Egan, P.E. Branton, and S.T. Bayley, Proc. Natl. Acad. Sci. USA 87:5883-5887, 1990). We have now examined induction by these same mutants in virus lacking the E1B region, so that cellular p53 was no longer complexed to the E1B 55-kDa protein. E1A mutants that fail to bind pRb induced DNA synthesis at a significantly lower level in Ad5 lacking E1B than in Ad5 containing E1B. Apparently, therefore, uncomplexed p53 can partially replace p300 in cooperating with pRb to suppress DNA synthesis in baby rat kidney cells.  相似文献   

14.
We have reported that an 11,600-Da nuclear membrane glycoprotein named adenovirus death protein (ADP), encoded by the E3 region, is required for the efficient death (lysis) of adenovirus (Ad)-infected cells. We postulated that ADP mediates the release of virions from cells at the conclusion of replication. Here we provide further characterization of cells infected by adp+ and adp- Ads. Using virus mutants with deletions in the individual E3 genes, we show that only mutants that lack ADP have small plaques that are slow to develop. Mutants in the adp gene replicated as well as wild-type Ad, but the cells lysed much more slowly. Cell lysis and viability were determined by plaque size, cell morphology, trypan blue exclusion, the release of lactate dehydrogenase, and the MTT assay for mitochondrial activity. ADP is required for efficient lysis of human A549, KB, 293, and MCF-7 cells. A549 cells infected with adp+ Ads began to die at 2-3 days postinfection and were dead by 6 days. With adp mutants, > 80% of cells remained viable for 5-6 days; when the medium was changed, > 80% of cells were viable after 7 days and 10-20% after 14 days. When the MTT assay was used, there was an increase in mitochondrial activity, suggesting that Ad infection stimulates respiratory metabolism. Nearly all nuclei from wild-type Adinfected cells lacked DAPI-stained DNA by 7 days, whereas with an adp mutant nearly all nuclei stained brightly after 15 days. Nuclei from adp mutant-infected cells were extremely swollen and full of virus, and appeared to have an intact nuclear membrane. Cells infected with wild-type Ad had many vacuoles and perhaps a disrupted nuclear membrane; they did not display features typical of apoptosis.  相似文献   

15.
Previous observations that the adenovirus type 5 (Ad5) E4orf6 and E4orf3 gene products have redundant effects in viral lytic infection together with the recent findings that E4orf6 possesses transforming potential prompted us to investigate the effect of E4orf3 expression on the transformation of primary rat cells in combination with adenovirus E1 oncogene products. Our results demonstrate for the first time that E4orf3 can cooperate with adenovirus E1A and E1A plus E1B proteins to transform primary baby rat kidney cells, acting synergistically with E4orf6 in the presence of E1B gene products. Transformed rat cells expressing E4orf3 exhibit morphological alterations, higher growth rates and saturation densities, and increased tumorigenicity compared with transformants expressing E1 proteins only. Consistent with previous results for adenovirus-infected cells, the E4orf3 protein is immunologically restricted to discrete nuclear structures known as PML oncogenic domains (PODs) in transformed rat cells. As opposed to E4orf6, the ability of E4orf3 to promote oncogenic cell growth is probably not linked to a modulation of p53 functions and stability. Instead, our results indicate that the transforming activities of E4orf3 are due to combinatorial effects that involve the binding to the adenovirus 55-kDa E1B protein and the colocalization with PODs independent from interactions with the PML gene product. These data fit well with a model in which the reorganization of PODs may trigger a cascade of processes that cause uncontrolled cell proliferation and neoplastic growth. In sum, our results provide strong evidence for the idea that interactions with PODs by viral proteins are linked to oncogenic transformation.  相似文献   

16.
Recent reports suggest that an early region 1B (E1B) 55, 000-molecular-weight polypeptide (55K)-null adenovirus type 5 (Ad5) mutant (dl1520) can replicate to the same extent as wild-type (wt) Ad5 in cells either deficient or mutated in p53, implicating p53 in limiting viral replication in vivo. In contrast, we show here that the replicative capacity of Ad5 dl1520 is wholly independent of host cell p53 status, as is the replicative capacity of comparable Ad12 E1B 54K-null adenoviruses (Ad12 dl620 and Ad12 hr703). Furthermore, we show that there is no requirement for complex formation between p53 and Ad5 E1B 55K or Ad12 E1B 54K for a productive infection, such that wt Ad5 and wt Ad12 will both replicate in cells which are null for p53. In addition, we find that these Ad5 and Ad12 mutant viruses induce S phase irrespective of the p53 status of the cell and that, therefore, S-phase induction does not correlate with the replicative capacity of the virus. Interestingly, the replicative capacities of the large E1B-null adenoviruses correlated positively with the ability to express E1B 19K and were related to the ability to repress premature adenovirus-induced apoptosis. Infection of primary human cells indicated that Ad5 dl1520, wt Ad5, and wt Ad12 replicated better in cycling normal human skin fibroblasts (HSFs) than in quiescent HSFs. Thus, the cell cycle status of the host cell, upon infection, also influences viral yield.  相似文献   

17.
18.
19.
The rotavirus nonstructural phosphoprotein NSP5 is encoded by a gene in RNA segment 11. Immunofluorescence analysis of fixed cells showed that NSP5 polypeptides remained confined to viroplasms even at a late stage when provirions migrated from these structures. When NSP5 was expressed in COS-7 cells in the absence of other viral proteins, it was uniformly distributed in the cytoplasm. Under these conditions, the 26-kDa polypeptide predominated. In the presence of the protein phosphatase inhibitor okadaic acid, the highly phosphorylated 28- and 32- to 35-kDa polypeptides were formed. Also, the fully phosphorylated protein had a homogeneous cytoplasmic distribution in transfected cells. In rotavirus SA11-infected cells, NSP5 synthesis was detectable at 2 h postinfection. However, the newly formed 26-kDa NSP5 was not converted to the 28- to 35-kDa forms until approximately 2 h later. Also, the protein kinase activity of isolated NSP5 was not detectable until the 28- and 30- to 35-kDa NSP5 forms had been formed. NSP5 immunoprecipitated from extracts of transfected COS-7 cells was active in autophosphorylation in vitro, demonstrating that other viral proteins were not required for this function. Treatment of NSP5-expressing cells with staurosporine, a broad-range protein kinase inhibitor, had only a limited negative effect on the phosphorylation of the viral polypeptide. Staurosporine did not inhibit autophosphorylation of NSP5 in vitro. Together, the data support the idea that NSP5 has an autophosphorylation activity that is positively regulated by addition of phosphate residues at some positions.  相似文献   

20.
Adenovirus type 5 encodes a 14.7-kDa protein that protects infected cells from tumor necrosis factor-induced cytolysis by an unknown mechanism. In this report, we demonstrate that infection of cells with an adenovirus vector expressing Fas ligand induced rapid apoptosis that was blocked by coinfection with a virus expressing 14. 7K. Moreover, AdFasL/G infection resulted in the rapid activation of DEVD-specific caspases, and caspase activation was blocked by coinfection with Ad14.7/G. Cell death induced by the overexpression of Fas ligand, Fas-associated death domain-containing protein (FADD)/MORT1, or FADD-like interleukin-1beta-converting enzyme (FLICE)/caspase-8 in a virus-free system was efficiently blocked by 14.7K expression. Moreover, we demonstrate that 14.7K interacts with FLICE. These results support the idea that FLICE is a cellular target for the 14.7-kDa protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号