首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A series of novel thermally stable poly(amide-imide)s (PAIs) based on non-coplaner diimide-diacid (DIDA) monomer is synthesized. These polymers are characterized by elemental analysis, FT-IR, 1H-NMR, 13C-NMR and 31P-NMR spectroscopic techniques and their physical and thermal properties are also studied. Four different dianhydrides pyromellitic anhydride (PMDA)/3,3′,4,4′-benzophenone tetracarboxylic dianhydride (BTDA)/1,4,5,8-naphthalene tetracarboxylic dianhydride (NTDA)/4,4′-oxydiphthalic anhydride (ODPA) and amino acid l-tryptophan are used to synthesize DIDA. The polymerization of DIDA with phosphorus containing triamines having phenyl moieties gives poly(amide-imide)s. The synthesized polymers are obtained in high yield and possessed inherent viscosity in the range 0.66–0.98 dL/g. These polymers display higher solubility in polar aprotic solvents, such as DMSO, NMP and DMF. In addition, the absorption edge values (λ o) obtained from their UV curves are determined, and all the resulting poly(amide-imide)s films exhibited high optical transparency. The glass transition temperature (T g) of these polymers is recorded in the range 211–265 °C, initial decomposition temperature in excess of 435 °C and char yield at 800 °C in nitrogen ranged from 52 to 70 %. Wide angle X-ray diffraction showed that all the polymers are almost amorphous.  相似文献   

2.
Three novel polyimides (PIs) having pendent 4‐(quinolin‐8‐yloxy) aniline group were prepared by polycondensation of a new diamine with commercially available tetracarboxylic dianhydrides, such as pyromellitic dianhydride, 3,3′,4,4′‐benzophenone tetracarboxylic dianhydride, and bicyclo[2.2.2]‐oct‐7‐ene‐2,3,5,6‐tetracarboxylic dianhydride. These PIs were characterized by FTIR, 1H NMR, and elemental analysis; they had high yields with inherent viscosities in the range of 0.4–0.5 dl g−1, and exhibited excellent solubility in many organic solvents such as N,N‐dimethyl acetamide, N,N′‐dimethyl formamide, N‐methyl pyrrolidone (NMP), dimethyl sulfoxide, and pyridine. These PIs exhibited glass transition temperatures (Tg) between 250 and 325° C. Their initial decomposition temperatures (Ti) ranged between 270 and 450°C, and 10% weight loss temperature (T10) up to 500°C with 68% char yield at 600°C under nitrogen atmosphere. Transparent and hard polymer films were obtained via casting from their NMP solutions. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

3.
Polyimides were prepared from diamines: 2,4,6-trimethyl-1,3-phenylenediamine (3MPDA) and 2,3,4,5-tetramethyl-1,4-phenylenediamine (4MPDA). 1,4-Bis(3,4-dicarboxyphenoxy)benzene dianhydride (HQDPA), 3,3′,4,4′-benzophenone tetracarboxylic dianhydride (BTDA), 3,3′-4,4′-diphenylsulphone tetracarboxylic dianhydride (SO2PDA), 3,3′,4,4′-diphenylsulphide tetracarboxylic dianhydride (SPDA), pyromellitic dianhydride (PMDA), and 2,2′-bis(3,4-dicarboxyphenyl)hexafluoroisopropane dianhydride (6FDA) were used as dianhydride. The gas permeabilities of H2, O2 and N2 through the polyimides were measured at temperatures from 30 °C to 90 °C. The results show that as methyl and trifluoromethyl substitution groups densities increase from 7.73 × 10−3 mol cm−3 to 13.50 × 10−3 mol cm−3, the peameability of H2 increases 10-fold at 60% loss of permselectivity of H2/N2; however, the permeability of O2 increases 20-fold at 20% loss of permselectivity of O2/N2. For O2/N2 separation, PMDA-3MPDA has similar performance to 6FDA-3MPDA and 6FDA-4MPDA; all have higher permeabilities for O2 than normal polyimides, and the P(O2)/α(O2/N2) trade-off relationships lie on the upper bound line for polymers. © 1999 Society of Chemical Industry  相似文献   

4.
The diamine 2‐methyl‐1,3‐bis(4‐aminophenyloxy)benzene was prepared via a nucleophilic substitution reaction and was characterized with Fourier transform infrared, elemental analysis, and 1H‐ and 13C‐NMR spectroscopy. The prepared diamine was also characterized with single‐crystal analysis. The geometric parameters of C19H18N2O2 were in the usual ranges. The dihedral angles between the central phenyl ring and the two terminal aromatic rings were 88.9 and 91.6°. The crystal structure was stabilized by N? H···N hydrogen bonds. The diamine was then polymerized with 3,3′,4,4′‐benzophenone tetracarboxylic acid dianhydride, 4,4′‐(hexafluoroisopropylidene)diphthalic anhydride, 3,4,9,10‐perylenetetracarboxylic acid dianhydride, and pyromellitic dianhydride by either a one‐step solution polymerization reaction or a two‐step procedure. These polymers had inherent viscosities ranging from 0.61 to 0.85 dL/gm. Some of the polymers were soluble in most common organic solvents even at room temperature, and some were soluble on heating. The degradation temperatures of the resultant polymers fell in the range of 260–500°C in nitrogen (with only 10% weight loss). The specific heat capacity at 200°C ranged from 1.0 to 2.21 J g?1 K?1. The temperatures at which the maximum degradation of the polymer occurred ranged from 510 to 610°C. The glass‐transition temperatures of the polyimides ranged from 182 to 191°C. The activation energy and enthalpy of the polyimides ranged from 44.44 to 73.91 kJ/mol and from 42.58 to 72.08 kJ/mol K, respectively. The moisture absorption was found in the range of 0.23–0.71%. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

5.
A new unsymmetrical diamine monomer, 2,4‐diaminophenyl [4′‐(2′′,6′′‐diphenyl‐4′′‐pyridyl)phenyl]ether, was successfully synthesized by nucleophilic substitution of 1‐chloro‐2,4‐dinitrobenzene with 4‐(2′,6′‐diphenyl‐4′‐pyridyl) phenol. The diamine monomer was characterized by FTIR, 1H and 13C NMR, and elemental analysis techniques and used for the preparation of novel polyimides (PIs) by reaction with commercially available tetracarboxylic dianhydrides such as pyromellitic dianhydride, 3,3′,4,4′‐benzophenone tetracarboxylic dianhydride, and bicyclo[2.2.2]‐oct‐7‐ene‐2,3,5,6‐tetracarboxylic dianhydride. These PIs with inherent viscosities ranged from 0.43 to 0.48 dL/g were readily soluble in many organic solvents and afforded tough and flexible films by solution casting. These polymers exhibited Tgs between 237 and 294°C, and 10% weight loss temperatures in excess of 500°C with up to 56% char yield at 600°C in air. Their maximum fluorescence emission in dilute (0.2 g/dL) NMP solution appeared at 450 nm. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

6.
Three novel diamine monomers ( VI , VII , and VIII ) were synthesized. These diamine monomers lead to a number of semifluorinated poly(ether imide)s when reacted with different commercially available dianhydrides like pyromellitic dianhydride (PMDA), benzophenone tetracarboxylic acid dianhydride (BTDA), 2,2‐bis (3,4‐dicarboxyphenyl) hexafluoropropene (6FDA), and oxydiphthalic dianhydride (ODA) by thermal imidization route. Elemental analyses, IR and NMR techniques were used to characterize the monomers and polymers. The resulting polymers exhibited weight average molar masses up to 1.78 × 105 g mol?1 in GPC with respect to polystyrene standard and have very good solubility in several organic solvents such as NMP, DMF, DMAC, DMSO, chloroform, and THF. Very good solubility of these polymers in CDCl3 enables their complete characterization by proton as well as 13C‐NMR techniques. The polymers showed very high thermal stability with decomposition temperature (5% weight loss) up to 511°C in air and high glass transition temperature up to 311°C depending upon the exact repeating unit structure. The polymer films showed high modulus (up to 2.9 GPa) as was evaluated by DMA. The polymers also showed very low water absorption (0.16%), low dielectric constant (2.35 at 1MHz) and very good optical transmission. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 3025–3044, 2007  相似文献   

7.
2,2′‐Position aryl‐substituted tetracarboxylic dianhydrides including 2,2′‐bis(biphenyl)‐4,4′,5,5′‐biphenyl tetracarboxylic dianhydride and 2,2′‐bis[4‐(naphthalen‐1‐yl)phenyl)]‐4,4′,5,5′‐biphenyl tetracarboxylic dianhydride were synthesized. A new series of aromatic polyimides (PIs) were synthesized via a two‐step procedure from 3,3′,4,4′‐biphenyl tetracarboxylic dianhydride and the newly synthesized tetracarboxylic dianhydrides monomers reacting with 2,2′‐bis[4′‐(3″,4″,5″‐trifluorophenyl)phenyl]‐4,4′‐biphenyl diamine. The resulting polymers exhibited excellent organosolubility and thermal properties associated with Tg at 264 °C and high initial thermal decomposition temperatures (T5%) exceeding 500 °C in argon. Moreover, the fabricated sandwich structured memory devices of Al/PI‐a/ITO was determined to present a flash‐type memory behaviour, while Al/PI‐b/ITO and Al/PI‐c/ITO exhibited write‐once read‐many‐times memory capability with different threshold voltages. In addition, Al/polymer/ITO devices showed high stability under a constant stress or continuous read pulse voltage of ? 1.0 V. Copyright © 2011 Society of Chemical Industry  相似文献   

8.
A diamine containing a pendant phenoxy group, 1-phenoxy-2,4-diaminobenzene, was synthesized and condensed with different aromatic dianhydrides [4,4′-oxydiphthalic dianhydride, 4,4′-(hexafluoroisopropylidene)diphthalic anhydride, 3,3′,4,4′-benzophenone tetracarboxylic dianhydride, 3,3′,4,4′-biphenyltetracorboxylic dianhydride, and pyromellitic dianhydride] by one-step synthesis at a high temperature in m-cresol to obtain polyimides in high yields. Most of the polyimides exhibited good solvent solubility and could be readily dissolved in chloroform, sym-tetrachloroethane, N,N-dimethylformamide, N,N-dimethylacetamide, and nitrobenzene. Their inherent viscosities were in the range of 0.33–1.16 dL/g. Wide-angle X-ray spectra revealed that these polymers were amorphous in nature. All these polyimides were thermally stable, having initial decomposition temperatures above 500°C and glass-transition temperatures in the range of 248–281°C. The gas permeability of 4,4′-oxydiphthalic dianhydride and 4,4′-(hexafluoroisopropylidene)diphthalic anhydride based polyimides was investigated with pure gases: He, H2, O2, Ar, N2, CH4, and CO2. A polyimide containing a  C(CF3)2 linkage showed a good combination of permeability and selectivity. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci 2008  相似文献   

9.
A new indane containing unsymmetrical diamine monomer ( 3 ) was synthesized. This diamine monomer leads to a number of novel semifluorinated poly (ether imide)s when reacted with different commercially available dianhydrides like benzene‐1,2,4,5‐tetracarboxylic dianhydride (PMDA), benzophenone‐3,3′, 4,4′‐tetracarboxylic dianhydride (BTDA), 4,4′‐(hexafluoro‐isopropylidene)diphthalic anhydride (6FDA), 4,4′‐oxydiphthalic anhydride (ODPA), and 4,4′‐(4,4′‐Isopropylidenediphenoxy)bis(phthalic anhydride) (BPADA) by thermal imidization route. All the poly(ether imide)s showed excellent solubility in several organic solvents such as N‐methylpyrrolidone (NMP), N,N‐dimethylformamide (DMF), N,N‐dimethylacetamide (DMAc), tetrahydrofuran (THF), chloroform (CHCl3) and dichloromethane (DCM) at room temperature. These light yellow poly (ether imide)s showed very low water absorption (0.19–0.30%) and very good optical transparency. Wide angle X‐ray diffraction measurements revealed that these polymers were amorphous in nature. The polymers exhibited high thermal stability up to 526°C in nitrogen with 5% weight loss, and high glass transition temperature up to 265°C. The polymers exhibited high tensile strength up to 85 MPa, modulus up to 2.5 GPa and elongation at break up to 38%, depending on the exact polymer structure. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

10.
This article describes the synthesis and characterization of several methyl nadimides endcapped resins based on tris(3-aminophenyl)phosphine oxide. These resins were prepared by reacting methyl-5-norbornene 2,3-dicarboxylic anhydride (methyl nadic anhydride) (MNA), pyromellitic dianhydride (PMDA)/3,3′,4,4′-benzophenone tetracarboxylic acid dianhydride (BTDA)/2,2-bis(3,4-dicarboxyphenyl) hexafluoropropane dianhydride (6F), and tris(3-aminophenyl)phosphine oxide (TAP) in glacial acetic acid/acetone. Structural characterization of the resins was done by elemental analysis, IR, and 1H-NMR. Thermal characterization of uncured resins using DSC and TGA techniques revealed an exothermic transition accompanied by a weight loss in the temperature range of 200–350°C. Residual weight at 800°C in nitrogen was found to be 47–55%. Isothermal curing of the resins was done at 340°C for 1 h in an air atmosphere. The cured resins were stable up to 400 ± 20°C. © 1994 John Wiley & Sons, Inc.  相似文献   

11.
A series of phosphorus-containing nadimide end-capped resins having different backbones was prepared by reacting endo-5-norbornene-2-3-dicarboxylic acid anhydride (nadic anhydride), pyromellitic dianhydride (PMDA)/3,3′,4,4′-benzophenone tetracarboxylic acid dianhydride (BTDA)/2,2-bis(3,4-dicarboxyphenyl)hexafluoropropane dianhydride (6F) and tris(3-aminophenyl)phosphine oxide (TAP) in glacial acetic acid/acetone. Structural characterization of the resins was done by elemental analysis, FTIR, and 1H-NMR. Thermogravimetric studies revealed a multistep decomposition reaction for uncured resins. Residual weight at 800°C in nitrogen was found to be 50–60%. Resins cured at 300°C for 1 h in air atmosphere were stable up to 440 ± 20°C and decomposed in a single step above this temperature. The char yields of cured resins were in the range 63–71.5%. © 1992 John Wiley & Sons, Inc.  相似文献   

12.
A series of novel aromatic diamines containing cycloaliphatic moieties was synthesized by the reaction of cycloalkanones like cyclohexanone and cycloheptanone with 2,6‐dimethylaniline. The tetrimide diacid was synthesized using the prepared diamine with 3,3′,4,4′‐benzophenonetetracarboxylic acid dianhydride/pyromellitic dianhydride and p‐aminobenzoic acid. The polymers were prepared by treating the tetrimide diacid with different aromatic diamines. The structures of the monomers and polymers were identified using elemental analysis and Fourier transform infrared, 1H NMR and 13C NMR spectroscopy. The polymers show excellent solubility. The polymers are amorphous and have high optical transparency. They also show good thermal stability and their Tg value is found to be in the range 268–305 °C. Copyright © 2007 Society of Chemical Industry  相似文献   

13.
4,4′‐Diamino‐3,3′‐dimethyldiphenylmethane was used to prepare polyimides in an attempt to achieve good organo‐solubility and light color. Polyimides based on this diamine and three conventional aromatic dianhydrides were prepared by solution polycondensation followed by chemical imidization. They possess good solubility in aprotonic polar organic solvents such as N‐methyl 2‐pyrrolidone, N,N‐dimethyl acetamide, and m‐cresol. Polyimide from 4,4′‐diamino‐3,3′‐dimethyldiphenylmethane and diphenylether‐3,3′,4,4′‐tetracarboxylic acid dianhydride is even soluble in common solvents such as tetrahydrofuran and chloroform. Polyimides exhibit high transmittance at wavelengths above 400 nm. The glass transition temperature of polyimide from 4,4′‐diamino‐3,3′‐dimethyldiphenylmethane and pyromellitic dianhydride is 370°C, while that from 4,4′‐diamino‐3,3′‐dimethyldiphenylmethane and diphenylether‐3,3′,4,4′‐tetracarboxylic acid dianhydride is about 260°C. The initial thermal decomposition temperatures of these polyimides are 520–540°C. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 72: 1299–1304, 1999  相似文献   

14.
Ten nadicimide/methyl nadicimide end-capped oligomeric resins were prepared by reacting endo-5-norbornene-2,3-dicarboxylic acid anhydride (methyl nadic anhydride), pyromellitic dianhydride (PMDA)/3,3′,4,4′-benzophenone tetracarboxylic acid dianhydride (BTDA)/2,2-bis(3,4-dicarboxyphenyl)hexafluoropropane dianhydride (6F), and bis(3-aminophenyl) methyl phospine oxide (BAP) in glacial acetic acid/acetone. Structural characterization of the resins was done by elemental analysis, IR, and 1H-NMR. Multistep decomposition was observed in the TG scan of uncured resins in a nitrogen atmosphere. Residual weight at 800°C depended on the structure and ranged between 25 and 51%. Isothermal curing of the resins was done at 300°C for 1 h in an air atmosphere. These cured resins were stable to 350 ± 30°C and decomposed in a single step above this temperature. The char yield of the resins increased on curing and was in the range 34–70%. © 1997 John Wiley & Sons, Inc. J Appl Polm Sci 65:861–869, 1997  相似文献   

15.
New polyamic acids with ‐A‐B‐A‐C‐ type periodic sequence of monomeric units (A derived from a diamine, B from benzophenone‐3,3′,4,4′‐tetracarboxylic dianhydride, and C from benzene‐1,2,4,5‐tetracarboxylic dianhydride) are prepared and transformed into polyimide membranes that are examined by various methods in order to investigate the influence of diamine units (aliphatic, alicyclic, or aromatic) on the morphology, thermal stability, and mechanical properties of membranes. Small‐ and wide‐angle X‐ray scattering and Atomic force microscopy show amorphous character of all membranes except for those containing hexane‐1,6‐diamine units. Thermogravimetric analysis reveals a decrease in the initial decomposition temperature from 551/501 °C to 437/395 °C (for N2/O2 atmosphere) when going from membranes with aromatic to those with aliphatic diamine units. Dynamic mechanical analysis shows quite high initial storage modulus (2100–3300 MPa) for all membranes at frequencies of 1, 10, and 20 Hz. The properties of prepared copolymeric polyimide are promising for a wide range of their potential technological applications. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134 , 45227.  相似文献   

16.
Two series of heterocyclic aromatic polymers were synthesized from 4,4′‐(4,4′‐isopropylidenediphenoxy)bis(phthaltic anhydride) and 2,2′‐bis(3,4‐dicarboxyphenyl)hexafluoropropane dianhydride by two‐step method. The inherent viscosities were in the range of 24–45 cm3/g. The effects of the rigid benzoxazole group in the backbone of copolymer on the thermal, mechanical, and physical properties were investigated. These polymers exhibit good thermal stability. The temperatures of 5% weight loss (T5) of these polymers are in the range of 403–530°C in air and 425–539°C in nitrogen. The chard yields of these polymers are in the range of 15–24% in air and 54–61% in nitrogen. These polymers also have high glass‐transition temperatures and a low coefficient of thermal expansion and good mechanical properties. The poly(benzoxazol imide) has a higher tensile strength and modulus than those of neat polyimide. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

17.
Syntheses of several UV-autocurable methacrylourethanes and the effects of polyol type on their properties are investigated. Autocurable benzophenone tetracarboxylic dianhydride (BTDA)-based polyurethane methacrylates are prepared by addition reaction from benzophenone tetracarboxylic dianhydride (BTDA), 2,4-toluene diisocyanate (TDI), 2-hydroxyethyl methacrylate (HEMA), and polyol (polyethylene glycol, polydiethylene succinate, polydiethylene maleate, or polydiethylene hexamethylene-dicarbamate). Autocurable oligomers possess good pot life and are cured rapidly when exposed to ultraviolet (UV) radiation without the addition of photoinitiator. The different polyols are used to obtain wide range properties of cured films with a glass transition temperature (Tg) range of -10.5-5.5°C. Increasing the Tg of polyol shifts the dynamic mechanical storage modulus and loss factor of the cured film to high temperature. For practical application, oligomer is mixed with reactive monomers to bring the systems to a workable viscosity at room temperature. Among the monomers, the higher the composition of hydroxyethyl acrylate in the oligomer-monomer system, the higher the curing rate of the system as compared with neat oligomer. Moreover, increasing the chain length of dimethacrylate monomers results in a decrease in breaking strength from 160 to 140 kg/cm2, in Young's modulus from 771 to 400 kg/cm2, and in glass transition temperature from 18 to 6.5°C, while the elongation at breaking increases from 70 to 130%.  相似文献   

18.
A new chiral diamine L-methyl-2-[(3,5-diaminobenzoyl)amino]-3-(1H-indol-3yl)propanoate was synthesized using L-tryptophan (essential amino acid) as starting material. The structure of the synthesized diamine was supported by Fourier transform infrared spectroscopy (FT-IR), nuclear magnetic resonance spectroscopy (1H and 13C-NMR) and mass spectral techniques. The diamine was polymerized with 3,3’,4,4’-benzophenone tetracarboxylic dianhydride via thermal imidization method to produce thermally stable chiral polyimide (PI) with low dielectric constant. Additionally, polyimide nanocomposites were also prepared by incorporating amino functionalized polyhedral oligomeric silsesquioxane (POSS) into the PI matrix. The polyimide and PI/POSS nanocomposites were characterized by FT-IR spectroscopy. The PI was found to have specific optical rotation of –41.4°. The inherent viscosity was found to be 0.77 dLg?1 indicating that a high molecular weight PI was formed. Surface morphology of the neat PI and nanocomposites was studied by scanning electron microscopy, transmission electron microscopy and atomic force microscopy (AFM) that reveal uniform distribution of the nanoparticles in the PI matrix. DSC analysis indicates that the Tg of the PI and its nanocomposites are in the range of 222–250 °C. The T10% was found to be in the range of 402.4–470.5 °C for the PI and its nanocomposites. The dielectric constant values are in the range of 3.5–2.1.  相似文献   

19.
New aromatic polyetherimides containing the 1,1′-bis[4-(3,4-dicarboxyphenoxy)phenyl]-1-phenyl-2,2,2-trifluoroethane dianhydride unit were prepared by a conventional two-step method from 1,1′-bis[4-(3,4-dicarboxyphenoxy)phenyl]-1-phenyl-2,2,2-trifluoroethane dianhydride and several diamines. This procedure yielded high molecular weight polyetherimides with inherent viscosities of 0.22–1.29 dL/g. Most of the corresponding polyetherimides were soluble in organic solvents such as N-methyl-2-pyrrolidone, N, N-dimethylformamide, N,N-dimethylacetamide, and methylene chloride under ambient temperature. The glass transition temperatures (Tg) of these polymers were in the range of 207–264°C and the temperatures of 10% weight loss were over 520°C at a heating rate 20°C/min in nitrogen. © 1996 John Wiley & Sons, Inc.  相似文献   

20.
New polyimides with enhanced thermal stability and high solubility were synthesized in common organic solvents from a new dianhydride, 2,2′‐dibromo‐4,4′,5,5′‐benzophenone tetracarboxylic dianhydride (DBBTDA). DBBTDA was used as monomer to synthesize polyimides by using various aromatic diamines. The polymers were characterized by IR and NMR spectroscopy and elemental analysis. These polyimides had good inherent viscosities in N‐methyl‐2‐pyrrolidinone (NMP) and also high solubility and excellent thermo‐oxidative stability, with 5 % weight loss in the range 433 to 597 °C. Copyright © 2004 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号