首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Poly(vinyl alcohol) (PVA) membranes were modified by introducing β-cyclodextrin (β-CD) oligomer, which has an inclusion ability sensitive to size, structure, and hydrophilicity of the guest molecule. The modified membranes (PVA/CD membrane) were prepared by casting of the aqueous solutions of PVA and β-CD oligomer. The CD oligomer was immobilized in the membranes by cross-linking with glutaraldehyde. The cross-linking times were 1 and 8 h. The content of CD in the membranes was 33 wt %. The effects of CD on the pervaporation characteristics for water/ethanol were investigated by comparisons with those of the cross-linked PVA membranes. For the 1 h cross-linked membranes, CD increased both the water permeation rate and selectivity at lower ethanol concentrations in the feed. At higher ethanol concentrations, CD increased the water selectivity, but it decreased the water permeation rate. For the 8 h cross-linked membranes, at lower ethanol concentrations, CD increased the water permeation rate, but the water selectivity through the PVA/CD membrane was almost equal to that of the PVA membrane. At higher ethanol concentrations, CD increased the water selectivity and decreased the water permeation rate. These effects of CD can be interpreted in terms of the inclusion strength in the cavity and the reduction of the cross-linking density of the PVA phase in the membranes. © 1994 John Wiley & Sons, Inc.  相似文献   

2.
To evaluate molecular recognition function of β‐cyclodextrin to xylene isomers, β‐CD polymer of branching chain extension (β‐CD‐EGDE) was synthesized by crosslinking β‐CD with ethylene glycol diglycidyl ether (EGDE). The pervaporation blend membranes of β‐CD‐EGDE/PVA were prepared by casting an aqueous solution of PVA and β‐CD polymer mixture, and the membranes were used for separation of p‐/m‐ and p‐/o‐xylene mixtures. It was observed that the pristine PVA membrane almost had no selectivity for xylene isomer mixtures. The PVA membrane incorporating β‐CD polymer had molecular recognition function, which selectively facilitated the transport of the xylene isomers. To ascertain pervaporation behavior, the sorption and desorption processes of the membrane in xylenes were investigated. The sorption result showed that the complex formation constant between β‐CDs and xylenes played a key role in swelling behavior. There was a significant difference between diffusion coefficients D and D0, calculated from the sorption and desorption measurements, respectively, indicating that the diffusivity selectivity in desorption stage may have remarkable effect on the total selectivity during pervaporation process. © 2012 American Institute of Chemical Engineers AIChE J, 59: 604–612, 2013  相似文献   

3.
Since pervaporation process is the coupling of solution and diffusion mechanisms, a sorption study was carried out with membranes prepared by cross-linking polyvinylalcohol (PVA) and polidimethylsiloxane (PDMS). Tartaric acid (Tac) was used as the cross-linking agent for PVA, and a commercial cross-linking agent was used for PDMS. Sorption experiments were carried out at 30-50°C temperature range in pure water and ethyl acetate using the films prepared. The PVA and PDMS films prepared preferentially sorb water and ethylacetate, respectively. A pervaporation study at 30°C was carried out for pure ethylacetate and pure water, and mixtures of ethylacetate containing 2 and 2.5 wt% water using 100 w m thick PVA membrane. The results indicate that the PVA membrane prepared is extremely selective for water.  相似文献   

4.
Since pervaporation process is the coupling of solution and diffusion mechanisms, a sorption study was carried out with membranes prepared by cross-linking polyvinylalcohol (PVA) and polidimethylsiloxane (PDMS). Tartaric acid (Tac) was used as the cross-linking agent for PVA, and a commercial cross-linking agent was used for PDMS. Sorption experiments were carried out at 30-50°C temperature range in pure water and ethyl acetate using the films prepared. The PVA and PDMS films prepared preferentially sorb water and ethylacetate, respectively. A pervaporation study at 30°C was carried out for pure ethylacetate and pure water, and mixtures of ethylacetate containing 2 and 2.5 wt% water using 100 μm thick PVA membrane. The results indicate that the PVA membrane prepared is extremely selective for water.  相似文献   

5.
Summary Dense polymer membranes were made by mixing aqueous solutions of hydrophilic polymers poly(vinyl alcohol) (PVA) and polyethyleneimine (PEI) in different ratios for investigating the separation of Tetrahydrofuran (THF)/water azeotropic mixtures by pervaporation (PV). In order to gain a more detailed picture of the molecular transport phenomenon, we have performed sorption gravimetric experiments at 30 °C to compute diffusion, swelling, sorption and permeability coefficients of PVA/PEI membranes in the presence of THF and water. The membranes were found to have good potential for breaking the azeotrope of THF at 6% concentration of water. An increase in PVA content in the blend caused a reduction in the flux and an increase in selectivity. Among the blends tested in the study, the 5:1 PVA/PEI blend membrane showed the highest separation factor of 181.5, exhibited a flux of 1.28 kg/m2h for THF respectively at azeotropic feed composition.  相似文献   

6.
Blend membranes of poly(vinyl alcohol) (PVA) and sodium alginate (NaAlg) were prepared by solution casting and crosslinked with glutaraldehyde (GA). Polymer blend compatibility was studied in water by measuring solution viscosity at 30°C. From the viscosity data, interaction parameters were determined to find the blend compatibility. Thickness of the membranes ranged between 35 and 40 μm. Circular disc‐shaped samples were cut from the thin membranes to perform gravimetric sorption experiments in water + 1,4‐dioxane and water + tetrahydrofuran mixtures at 30°C. Diffusion coefficients were calculated using Fick's equation. Concentration profiles of liquids were computed by solving Fick's equation under suitable boundary conditions. Diffusion coefficients show a dependence on the composition of the blends as well as composition of binary mixtures. A correlation was attempted between concentration profiles and diffusion coefficients of the transporting liquids. Degree of swelling and sorption coefficients were calculated from the gravimetric sorption data. Sorption kinetics was studied using an empirical equation to understand the nature of sorption–diffusion anomalies. Membrane selectivity for water + 1,4‐dioxane and water + tetrahydrofuran mixtures were calculated from the pervaporation experiments. A correlation between sorption and membrane selectivity was attempted. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 178–188, 2005  相似文献   

7.
Poly(vinyl alcohol) as well as its grafted copolymer membranes with polyacrylonitrile (PAN‐g‐PVA) were prepared and used to separate water and dimethyl formamide mixtures by the pervaporation technique. The three following membranes were prepared: (1) pure PVA; (2) 46% grafted PAN‐g‐PVA; and (3) 93% grafted PAN‐g‐PVA. Pervaporation separation experiments were carried out at 25°C for the feed mixture containing 10 to 90% water. By use of the transport data, permeation flux, separation selectivity, swelling index, and diffusion coefficients have been calculated. By increasing the grafting of the membrane, flux decreased, whereas separation selectivity increased slightly over that of pure PVA membrane. Arrhenius activation parameters for transport processes were calculated for 10 mass % water containing feed mixture by using flux and diffusion data obtained at 25, 35, and 45°C. Transport parameters were discussed in terms of sorption‐diffusion principles. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 91: 4091–4097, 2004  相似文献   

8.
Polyacrylamide‐grafted sodium alginate (PAAm‐g‐Na‐Alg) copolymeric membranes have been prepared, characterized, and used in the pervaporation separation of 10–80 mass % water‐containing tetrahydrofuran mixtures. Totally three membranes were prepared: (1) neat Na‐Alg with 10 mass % of polyethylene glycol (PEG) and 5 mass % of polyvinyl alcohol (PVA), (2) 46 % grafted PAAm‐g‐Na‐Alg membrane containing 10 mass % of PEG and 5 mass % of PVA, and (3) 93 % grafted PAAm‐g‐Na‐Alg membrane containing 10 mass % of PEG and 5 mass % of PVA. Using the transport data, important parameters like permeation flux, selectivity, pervaporation separation index, swelling index, and diffusion coefficient have been calculated at 30°C. Diffusion coefficients were also calculated from sorption gravimetric data of water–tetrahydrofuran mixtures using Fick's equation. Arrhenius activation parameters for the transport processes were calculated for 10 mass % of water in the feed mixture using flux and diffusion data obtained at 30, 35, and 40°C. The separation selectivity of the membranes ranged between 216 and 591. The highest permeation flux of 0.677 kg/m2 h was observed for 93% grafted membrane at 80 mass % of water in the feed mixture. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 272–281, 2002  相似文献   

9.
《分离科学与技术》2012,47(9):1396-1405
In this article, polydimethylsiloxane and hydrophobic nano-silica filled polydimethylsiloxane membranes were prepared and employed in dimethylcarbonate (DMC) removal from the DMC/methanol mixture via pervaporation. The sorption and diffusion behavior of the binary molecule were discussed separately to provide qualitative estimation of the PV performance in both membranes. Compared with the polydimethylsiloxane membrane, hydrophobic nano-silica filled polydimethylsiloxane membranes had a little lower sorption selectivity but higher diffusion selectivity. In both membranes, the sorption value was obtained by both experimentation and model prediction. The Flory-Huggins model was performed to predict the solvent uptakes and the sorption concentrations based on the experimental results. The sorption behavior of DMC was predictable, while the methanol solubility was a little higher than the experimental results. Moreover, the diffusion behavior was studied by Fick's law, the calculated diffusion coefficients of the permeates demonstrated a diffusion-coupling phenomenon, especially in hydrophobic nano-silica filled polydimethylsiloxane membranes. Methanol molecules diffused faster than DMC, suggesting the low diffusion selectivity. The PV performance was affected by both sorption and diffusion. Sorption was demonstrated to be a decisive factor in this pervaporation process.  相似文献   

10.
《分离科学与技术》2012,47(3):311-331
ABSTRACT

A detailed analysis of separation of N-methyl piperazine (NMP), N-ethyl pipera-zine (NEP), and water was undertaken by the pervaporation technique. A systematic study of sorption and permeation of the aqueous alkyl piperazines through poly(dimethylsiloxane) (PDMS), styrene-butadiene rubber (SBR), PDMS filled with zeolites NaX and silicalite (SA-5), polyimide (PI), and poly(acrylonitrile-co-acrylic acid) (PAN-co-AA) was carried out at different concentrations and temperatures. Organophilic membranes showed higher selectivity toward alkyl piperazines during sorption, but permeation was in favor of water. Hydrophilic membranes, however, showed higher affinity toward water during both sorption and permeation. PI membrane showed higher selectivity for water than PAN-co-AA. A model was used to estimate the diffusion coefficients of the various permeants. It was found that the transport selectivity for water in organophilic membranes was due to high diffusion selectivity (for water) although sorption selectivity favored the piperazines.  相似文献   

11.
This study reveals the effect of hydrophilic bentonite nanoclay on the pervaporation separation of azeotropic composition of water and 1,4‐dioxane. The permselectivity of the membrane increased with filler concentration and was selective toward water at minimum filler loading. The intrinsic properties such as membrane permeance and selectivity increased with the concentration of hydrophilic bentonite nanoclay and crosslinked poly(vinyl alcohol) (PVA) with 2 wt% nanoclay membranes showed intrinsic selectivity 443 (532% increment than that of pristine membranes) with water permeance 4,675 gas permeation unit which is significantly higher compared to earlier literature. X‐ray diffraction and Transmission electron microscopy showed the well exfoliated and distributed nanoclay structure in the crosslinked PVA matrix. Interaction of PVA with nanoclay and the hydrophilic character of the membranes were characterized by Fourier transform infrared spectra and contact angle analysis, respectively. Interestingly, in this work the membranes exhibited simultaneous increment in both permeation flux and selectivity with filler loading, rather than the usual inverse trend of flux and selectivity. A predictive model of pervaporation was used to explain the pervaporation behavior and it showed good agreement with experimental results for overall pervaporation performance, preferential sorption of water, and hydrophilic‐hydrophobic nature of the membranes. POLYM. ENG. SCI., 58:849–858, 2018. © 2017 Society of Plastics Engineers  相似文献   

12.
Poly(vinyl alcohol) membranes containing cyclodextrin (CD–PVA membrane) were prepared and characteristics of permeation and separation for propanol (PrOH) isomers through the CD–PVA membranes were investigated by pervaporation and evapomeation. Evapomeation was more effective for the separation of PrOH isomers through the CD–PVA membrane than was pervaporation. The CD–PVA membrane more preferentially permeated n-PrOH than i-PrOH from their mixtures. In particular, the mixture of 10 wt % n-PrOH concentration was concentrated to about 45 wt % through the CD–PVA membrane. Both permeability and selectivity for n-PrOH were improved with an increase of CD content in the membrane. The results were supported by the fact that the affinity of CD for n-PrOH was stronger than that for i-PrOH. The permeation mechanism of PrOH isomers through the CD–PVA membrane is discussed based on the solution–diffusion theory. © 1994 John Wiley & Sons, Inc.  相似文献   

13.
Crosslinked blended membranes of poly(vinyl alcohol) (PVA) and N-methylol nylon-6 were prepared either by thermal crosslinking at 180°C or by chemical crosslinking with maleic acid. The pervaporation performance for the separation of ethanol–water mixtures of these membranes was investigated in terms of feed concentration, PVA content, and crosslinking agent content. The pervaporation performance of two differently crosslinked membranes was strongly influenced by the nature of the crosslinkage. Significant improvement in the pervaporation separation index can be achieved for chemically crosslinked membranes. From the comparison between the pervaporation and sorption tests, it is suggested that, for hydrophilic membranes, sorption properties dominate the pervaporation performance at feed solutions of higher water content, while diffusion properties govern at feed solutions of higher ethanol content. © 1998 John Wiley & Sons, Inc. J. Appl. Polym. Sci. 70: 317–327, 1998  相似文献   

14.
Graft copolymers of poly(vinyl alcohol) (PVA) with polyacrylamide were prepared and membranes were fabricated at 48 and 93% grafting of acrylamide onto PVA. These membranes were used in the pervaporation separation of water/acetic acid mixtures at 25, 35, and 45°C. The permeation flux, separation selectivity, diffusion coefficient, and permeate concentration were determined. The highest separation selectivity of 23 for neat PVA at 25°C and the lowest value of 2.2 for 93% acrylamide‐grafted PVA membranes were observed. A permeation flux of 1.94 kg m?2 h?1 was found for the 93% grafted membrane at 90 mass % of water in the feed mixture. The diffusion coefficients in a water/acetic acid mixture had an effect on the membrane permselectivity. The Arrhenius equation was used to calculate the activation parameters for permeation as well as for the diffusion of water and of acetic acid. The activation energy values for the permeation flux varied from 97 to 28 kJ/mol. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 244–258, 2002  相似文献   

15.
《分离科学与技术》2012,47(15):3045-3060
Abstract

A swollen-dry-layer model is presented for the pervaporation of ethanol-water solution through hydrophilic polymer membranes: poly(vinyl alcohol) and carboxymethyl cellulose. Independent measurements were conducted of the sorption equilibrium, the hydraulic permeation rates through the swollen membranes, and the permeabilities of ethanol and water vapors. The hydraulic permeabilities were estimated from the mutual diffusion coefficients of solution in the swollen membrane. Sorption behavior and hydraulic permeabilities showed a dependence on feed concentration. Vapor permeabilities of water and ethanol through dry membranes differ by a factor of about 20. Comparisons between the experimental data from the pervaporation run and the results calculated from the model were made. The model offers a quantitative explanation for the dependency of selectivity and flux on feed concentration. The model explained that the flux dependency caused by a change in the swollen-dry-layer ratio, and that the selectivity is governed by vapor permeabilities through the dry layer.  相似文献   

16.
The blend membranes of sodium alginate and poly(vinyl alcohol) have been prepared by physical mixing in different ratios (75, 50, and 25%) of sodium alginate with poly(vinyl alcohol). The membranes were crosslinked with glutaraldehyde and used in the pervaporation separation of water + isopropanol mixtures at 30°C. The crosslinking reaction was confirmed by Fourier transform infrared spectra. Permeation flux increased with an increase in mass % of water in the feed mixture as well as with an increase in the amount of poly(vinyl alcohol) in the blend, but separation selectivity decreased. Diffusion coefficients of water + isopropanol mixtures have been calculated using the Fick's equation from the sorption data. Arrhenius activation parameters were calculated for 10 mass % of water in the feed mixture using the values of flux and diffusion coefficients obtained at 30, 40, and 50°C. The diffusion and pervaporation results have been explained on the basis of solution‐diffusion principles. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 3642–3651, 2002  相似文献   

17.
Water‐soluble hyperbranched polyester (WHBP) was synthesized through the esterification reaction of the fourth generation hyperbranched polyester and maleic anhydride. A novel cross‐linked WHBP/PVA membrane was prepared by adding WHBP into poly(vinyl alcohol) (PVA) solution with glutaraldehyde as the cross‐linker. WHBP was characterized by Nuclear Magnetic Resonance and Attenuated Total Reflection Fourier Transform Infrared Spectroscopy (ATR‐FTIR), while WHBP/PVA membranes were characterized by ATR‐FTIR, X‐ray Diffraction, Scanning Electron Microscopy, Thermogravimetric Analysis, mechanical capacity, and water contact angle. Testing results showed that maleic anhydride was grafted on the surface of WHBP; compared with PVA membrane, WHBP/PVA membrane had lower crystallinity, weaker mechanical strength, higher hydrophilicity, and better thermal stability. Sorption and diffusion behaviors of n‐butanol and water in WHBP/PVA membrane were investigated; pervaporation performances of WHBP/PVA membrane were studied through the dehydration of the 90 wt % n‐butanol aqueous solution at 40°C. With an increase of the WHBP content from 0 to 30 wt %, both n‐butanol uptake and n‐butanol diffusion coefficient first decreased then increased; n‐butanol flux first decreased from 10 to 2 g·m?2·h?1 then increased to 213 g·m?2·h?1; both sorption selectivity and diffusion selectivity first increased then decreased; separation factor first increased from 88 to 1309 then decreased to 16. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43533.  相似文献   

18.
《分离科学与技术》2012,47(12):1908-1914
3A-filled hydrophilic polyurethane (PU) membranes were prepared by incorporating zeolite 3A into PU for pervaporation separation of acetaldehyde and water mixtures (acetaldehyde concentration 2 wt%–20 wt%). The composite membranes were characterized by Fourier transform infrared spectroscopy and X-ray diffraction. The morphology and thermal stability of these membranes were also investigated. The effects of zeolite 3A on the sorption, diffusion, and pervaporation performance were evaluated. The swelling study showed that 3A-PU membrane had higher swelling degree in acetaldehyde aqueous solution than in pure water. And the swelling degree of the composite membrane in acetaldehyde solution increased with the 3A content. The permeation flux and water/acetaldehyde separation factor first increased and then decreased with increasing 3A content. The reason may be that a proper quantity of 3A will enlarge the free volume fraction of PU while excessive 3A lead to its poor dispersion. The highest permeation flux of the composite membrane could reach 223 g · m?2 · h?1 and the maximum water/acetaldehyde selectivity achieved 7.5. The calculation of sorption selectivity and diffusion selectivity showed that diffusion played a more important role in this process.  相似文献   

19.
Detailed atomistic structures of blend membranes (poly vinyl alcohol (PVA)/(acrylic acid-co-2-acrylamido-2-methylpropylsulfonic acid) (P(AA-AMPS)) were constructed to investigate the sorption and diffusion behavior of gas molecules (water and propylene) in the membranes. Interaction and miscibility between PVA and P(AA-AMPS) were calculated, and it was found that strong intermolecular interaction resulted in good miscibility of PVA and P(AA-AMPS) in the blend. The polymer chains mobility and free volume properties of the blend membranes were characterized. The sorption quantities and sorption sites of water and propylene in the blend membranes were calculated using Grand Canonical Monte Carlo (GCMC) method. The diffusion coefficients of water in the blend membranes were calculated by molecular dynamics (MD) simulation. The simulated results of the membrane structure (chain mobility, free volume properties), the sorption quantities and diffusion coefficients of water/propylene in the blend membranes showed the identical changing trends as the experimental results. Hopefully, this study could offer qualitative insight into the mass transport phenomena within the blend membranes.  相似文献   

20.
NCO‐terminated polyurethane membranes were prepared using diisocyanate, diol, and trimethylolpropane (TMP) using an NCO/OH ratio of 1.6 : 1. Prepolymer was chain‐extended using cellulose acetate butyrate (CAB) in the ratios of 2 : 1, 4 : 1, and 3 : 1 of NCO/OH. Polyurethane (PU) membranes were characterized by differential scanning calorimeter (DSC) and thermogravimetry (TGA) to investigate their thermal properties. Equilibrium sorption studies were carried out at 30°C in water and ethyl acetate media as well as in their binary mixtures. The influence of CAB on pervaporation (PV) separation of an ethyl acetate/water (92/8, w/w, i.e., azeotropic composition) mixture was investigated. Membranes in this study showed a selectivity of 42.42 with a flux value of 0.187 kg/m/h for 3 : 1% NCO/OH containing PU membrane. In order to gain a more detailed picture of the molecular transport phenomenon, we performed the sorption gravimetric experiments at 30°, 35°, 40°, and 50°C to compute diffusion, swelling, sorption, and permeability coefficients of PU membranes in the azeotropic mixture of ethyl acetate and water. Activation parameters for diffusion and permeation were computed from the Arrhenius equation to understand the polymer/solvent interactions. Sorption trends and diffusion anomalies were established through an empirical equation after estimating the diffusion parameters. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 3405–3414, 2007  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号