首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The three-dimensional (3-D) arrangement of pores in translucent alumina was investigated with a confocal scanning laser microscope (CSLM). By moving the focal plane of the CSLM down into the material, a stack of serial thin optical sections was obtained to produce a 3-D image of the pores. Computer-based image analysis was used to obtain the coordinates of the pore centroids. The distance distribution function G(r) and the second-order functions K(r), L(r), H(r) and g(r) were used to analyse the spatial point pattern of the pore centroids. Estimates of the preceding functions obtained from eight stacks of sections were compared with the corresponding functions for a 3-D stationary Poisson point process, which served as a reference model for complete spatial randomness. The analysis suggested that the pore centroids were arranged in an aggregated pattern within a range of about 10 μm.  相似文献   

2.
3.
Objective: Although several methods have been used to detect the intracellular reactive oxygen species (ROS) generation, it is still difficult to determine where ROS generate from. This study aimed to demonstrate whether ROS generate from mitochondria during oxidative stress induced mitochondria damage in cardiac H9c2 cells by laser scanning confocal microscopy (LSCM). Methods: Cardiac H9c2 cells were exposed to H2O2 (1200μM) to induce mitochondrial oxidant damage. Mitochondrial membrane potential (ΔΨm) was measured by staining cells with tetramethylrhodamine ethyl ester (TMRE); ROS generation was measured by staining cells with dichlorodihydrofluorescein diacetate (H2DCFDA). Results: A rapid/transient ROS burst from mitochondria was induced in cardiac cells treated with H2O2 compared with the control group, suggesting that mitochondria are the main source of ROS induced by oxidative stress in H9c2 cells. Meanwhile, the TMRE fluorescence intensity of mitochondria which had produced a great deal of ROS decreased significantly, indicating that the burst of ROS induces the loss of ΔΨm. In addition, the structure of mitochondria was damaged seriously after ROS burst. However, we also demonstrated that the TMRE fluorescence intensity might be affected by H2DCFDA. Conclusions: Mitochondria are the main source of ROS induced by oxidative stress in H9c2 cells and these findings provide a new method to observe whether ROS generate from mitochondria by LSCM. However, these observations also suggested that it is inaccurate to test the fluorescence intensities of cells stained with two or more different fluorescent dyes which should be paid more attention to. Microsc. Res. Tech. 76:612–617, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

4.
Polymer-modified bitumen emulsions present a safer and more environmentally friendly binder for enhancing the properties of roads. Cationic bitumen emulsion binders containing polymer latex were investigated using confocal laser scanning microscopy. The latex was incorporated into the bitumen emulsion by using four different addition methods and all emulsions were processed with a conventional colloid mill. The emulsion binder films were studied after evaporation of the emulsion aqueous phase. We show how the microstructure and distribution of the polymer varies within the bitumen binder depending on latex addition method, and that the microstructure of the binder remains intact when exposed to elevated temperature. It was found that a distinctly fine dispersion of polymer results when the polymer is blended into the bitumen before the emulsifying process (a monophase emulsion). In contrast, bi-phase emulsion binders produced by either post-adding the latex to the bitumen emulsion, or by adding the latex into the emulsifier solution phase before processing, or by comilling the latex with the bitumen, water and emulsifier all resulted in a network formation of bitumen particles surrounded by a continuous polymer film. The use of emulsified binders appears to result in a more evenly distributed polymer network compared to the use of hot polymer-modified binders, and they therefore have greater potential for consistent binder cohesion strength, stone retention and therefore improved pavement performance.  相似文献   

5.
Studies of the three-dimensional (3-D) organization of cell nuclei are becoming increasingly important for the understanding of basic cellular events such as growth and differentiation. Modern methods of molecular biology, including in situ hybridization and immunofluorescence, allow the visualization of specific nuclear structures and the study of spatial arrangements of chromosome domains in interphase nuclei. Specific methods for labelling nuclear structures are used to develop computerized techniques for the automated analysis of the 3-D organization of cell nuclei. For this purpose, a coordinate system suitable for the analysis of tri-axial ellipsoidal nuclei is determined. High-resolution 3-D images are obtained using confocal scanning laser microscopy. The results demonstrate that with these methods it is possible to recognize the distribution of visualized structures and to obtain useful information regarding the 3-D organization of the nuclear structure of different cell systems.  相似文献   

6.
Borosilicate glass and borosilicate glass matrix composites reinforced with 10, 15 and 30 vol.% alumina platelets have been indented and the subsurface lateral cracking examined by confocal scanning laser microscopy (CSLM). The suitability of the CSLM technique as a quick and nondestructive method of obtaining three-dimensional information of subsurface damage in dispersion reinforced brittle matrix composite materials was demonstrated. The addition of alumina platelets to the glass matrix has resulted in a reduction in the extent and depth of subsurface damage due to indentation, and hence may make the material more resistant to erosive wear. This damage development may be a consequence of the presence of residual compressive stresses in the matrix and the strong platelet/matrix interfacial bonding.  相似文献   

7.
Resilin is a rubber-like protein found in the exoskeleton of arthropods. It often contributes large proportions to the material of certain structures in movement systems. Accordingly, the knowledge of the presence and distribution of resilin is essential for the understanding of the functional morphology of these systems. Because of its specific autofluorescence, resilin can be effectively visualized using fluorescence microscopy. However, the respective excitation maximum is in the UV range, which is not covered by the lasers available in most of the modern commercial confocal laser scanning microscopes. The goal of this study was to test the potential of confocal laser scanning microscopy (CLSM) in combination with a 405 nm laser to visualize and analyse the presence and distribution of resilin in arthropod exoskeletons. The results clearly show that all resilin-dominated structures, which were visualized successfully using wide-field fluorescence microscopy (WFM) and a 'classical' UV excitation, could also be visualized efficiently with the proposed CLSM method. Furthermore, with the application of additional laser lines CLSM turned out to be very appropriate for studying differences in the material composition within arthropod exoskeletons in great detail. As CLSM has several advantages over WFM with respect to detailed morphological imaging, the application of the proposed CLSM method may reveal new information about the micromorphology and material composition of resilin-dominated exoskeleton structures leading to new insights into the functional morphology and biomechanics of arthropods.  相似文献   

8.
Protein body-free maize zein, when mixed at 35 degrees C (above its glass transition temperature range), significantly (p < 0.01) improved the rheological and leavening properties of sorghum-wheat composite flour dough, resulting in improved loaf volume. Confocal laser scanning microscopy was used to observe the structure of zein fibrils and the interaction between zein and gluten proteins in the composite dough and bread systems. Autofluorescence and immunolocalization techniques were used to locate gluten and zein, respectively. Optical sections were collected every 0.4 microm through the samples and digitally processed to produce reconstructed three-dimensional images. Results showed that zein fibrils form an outer layer that intermittently coats the gluten networks, thereby strengthening them. This type of microstructure is able to withstand the pressure exerted by gas cell expansion during yeast fermentation to increase loaf volume.  相似文献   

9.
The properties and performance of collagen‐based materials may be affected by the collagen fibre bundle pattern, orientation and weave. The aim of this study was to develop and apply methods to visualize the dermis using confocal laser scanning microscopy from thin tissue sections stained with haematoxylin and eosin. The data was processed to allow three‐dimensional (3‐D) visualization on a PC and using a 3‐D immersive technology system. The 3‐D visualization of the confocal microscope image stacks allowed the evaluation of the collagen macromolecular structure including the collagen fibre bundles. The methods developed provide a novel way of viewing complex organic structures with further potential applications in the medical field.  相似文献   

10.
Within the concept of point processes, a review is presented of quantities which can be used in studies of three-dimensional (3-D) aggregates of particles. Suitable characteristics and estimators are given for both unmarked and marked point processes. To demonstrate the feasibility of such quantitative approaches, an application in histology, dealing with 3-D arrangements of cell nuclei in rat liver, is described. Using a confocal scanning light microscope, 3-D images are recorded and image analysis used to obtain the coordinates of the centroid, together with the volume and DNA content, of each cell nucleus. Examples of results are given, using both unmarked and marked point processes. In the latter case, cell type, nuclear volume and ploidy group are suitable marks.  相似文献   

11.
Knowledge of the water droplet size distribution of fat spreads is necessary for the development and production of high quality microbiological safe products. Fat spreads are water‐in‐oil emulsions. The water droplet size distribution can be determined by confocal scanning laser microscopy (CSLM) after staining the fat with Nile Red. The profiles of the non‐fluorescent water droplets in the 2D images are identified and measured using image analysis. The ‘true’ water droplet size distribution is calculated from the distribution of the measured profile diameters using a Wicksell transformation of log‐normal distributions. The influence of the fluorescent staining and CSLM parameters on the information were studied. The CSLM method was tested on fat spreads with a fat content ranging from 40% to 80%. The results were compared with those obtained by nuclear magnetic resonance spectroscopy (NMR). The distribution parameters [volume weighed geometric mean diameter (D?3,3) and the standard deviation (σ) of the logarithm of the droplet diameter] calculated for 80% fat spreads are in good agreement with those obtained by NMR (within ± 7% relative). Small differences were found for 65% fat spreads and large differences were identified for 40% fat spreads. The precision for the determination of the D?3,3 value by CSLM is worse than that of NMR, even when three images were used to calculate this parameter [3–11% and 1–6% relative standard deviation (RSD), respectively]. The precision for the determination of exp(σ) by CSLM is comparable or better than that of NMR (1–5% and 3–6% RSD, respectively). CSLM proved to be a reliable method for the determination of the water droplet size distribution of margarines (80% fat). The advantage of CSLM compared to NMR is that visual information is given about the water droplet size distribution in the sample.  相似文献   

12.
The aim of the study was to assess the penetrability of two endodontic sealers (AH Plus and MTA Fillapex) into dentinal tubules, submitted to endodontic treatment and subsequently to endodontic retreatment. Thirty ex vivo incisors were prepared using ProTaper rotary system up to F3 instrument and divided in three groups according to the endodontic sealer used for root canal filling: AH Plus (AHP), MTA Fillapex (MTAF), and control group (CG) without using EDTA previously to the root canal filling. Rhodamine B dye (red) was incorporated to the sealers in order to provide the fluorescence which will enable confocal laser scanning microscopy (CLSM) assessment. All specimens were filled with gutta‐percha cones using the lateral compaction technique. The specimens were submitted to endodontic retreatment using ProTaper Retreatment system, re‐prepared up to F5 instruments and filled with gutta‐percha cones and the same sealer used during endodontic retreatment. Fluorescein dye (green) was incorporated to the sealer in order to distinguish from the first filling. The roots were sectioned 2 mm from the apex and assessed by CLSM. No difference was found between the two experimental groups (P > 0.05). On the other hand, in the control group the sealers were not capable to penetrate into dentinal tubules after endodontic treatment (P > 0.05). In retreatment cases, none of the sealers were able to penetrate into dentin tubules. It can be concluded that sealer penetrability is high during endodontic treatment. However, MTA Fillapex and AH Plus do not penetrate into dentinal tubules after endodontic retreatment. Microsc. Res. Tech. 77:467–471, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

13.
Activated sludge flocs are complex consortia of various micro-organisms. The community structures of samples taken from municipal sewage treatment plants were characterized using fluorescently labelled, 16S and 23S rRNA-targeted oligonucleotide probes in combination with confocal scanning laser microscopy (CSLM). In comparison with conventional epifluorescence microscopy, CSLM considerably improved the capability to visualize directly the spatial distribution of defined bacterial populations inside the sludge flocs. Analyses could be performed at high resolution undisturbed by problems such as autofluorescence or limited spatial resolution in thick samples. In addition, CSLM was used to analyse some structural properties of paraformaldehyde-fixed activated sludge flocs, such as floc size and homogeneity. Typical floc sizes were found to be in the range between 5 and 50 μm. Whereas most of the flocs were completely colonized by bacteria, there were also examples of flocs containing gas bubbles or particles in the interior.  相似文献   

14.
Membrane domains rich in caveolin‐3 overlie sarcomeric actin in skeletal muscle. The membrane exhibits a regular array of caveolin‐3 immunofluorescence using confocal laser scanning microscopy (CLSM). Fourier analysis of tissue imaged by CLSM accurately defines a repeating intensity with a long‐axis spacing of 1.48 µm confirmed by measurement of direct images. Reverse fast Fourier transform (FFT) and image‐modelling allow reconstruction of the pattern. Mathematical modelling has allowed replication of several features of the FFT, including the second order maxima that confirm the relatively high information content of the original images. Measurements of membrane‐pattern primary long‐axis spacings are consistent with our measurements of the I‐band sarcomere repeat in similarly prepared specimens labelled with fluorescent phalloidin or imaged using differential interference contrast microscopy. Dual‐channel CLSM analysis of the sarcomeric banding pattern of actin and the repeating pattern of muscle fibre membrane caveolin showed that caveolae overlie the I‐band. The anti‐caveolin immunofluorescence is deficient over the Z‐disc and maximal toward each of the I‐band extremities. A mechanism of membrane shape change in which membrane–lipid molecules are interposed between more stable anchored rafts associated with caveolae can be envisaged. Thus, increasing girth and reducing length of the sarcolemma in rapid contraction may be explained.  相似文献   

15.
The development of a photobleaching technique, CFMM (continuous fluorescence multipoint microphotolysis), to measur e diffusion coefficients in gel systems using a confocal scanning laser microscope is described. Diffusion coefficients (D) were determined for fluorescently labelled dextrans of varying molecular weight in agarose gels, and the results compared with two other methods. CFMM enabled diffusion coefficients to be rapidly determined from the profile across an irradiated area within a defined microscopic location of the gel. The technique was experimentally simple and produced values of D that corresponded well with classical double-diffusion cell methods.  相似文献   

16.
Confocal scanning laser microscopy provides the opportunity to obtain three-dimensional (3-D) images by piling up consecutive confocal planes. This technique was applied to capture 3-D images from 100-μm-thick tissue blocks from prostate lesions (hyperplasia, dysplasia, adenocarcinomas). Automated methods were implemented to perform a nuclear grading of 3-D cell nuclei from these specimens. Special attention was focused on the development of a new approach to 3-D chromatin texture analysis. This method uses mathematical morphology operations to tessellate the chromatin into homogeneous domains. The nuclear features (volume, shape, texture) were subjected to a discriminant analysis. Using a set of five features, the classification of cell nuclei yielded an accuracy of 963%. The results indicate the potential of 3-D imaging and analysis techniques for an automated nuclear grading of prostate lesions.  相似文献   

17.
K Yoneyama 《Scanning》2001,23(6):359-365
We evaluated the morphology and physiologic function of the bile canaliculi (BC) in the rat liver slice (RLS) by confocal laser scanning microscopy (CLSM). Lucifer yellow (LY) dye was injected into the RLS, and the distribution of LY was serially evaluated. After the injection of LY, hepatocytes were initially visualized, followed by visualization of the BC. There was no significant difference in the distribution of LY between zones 1 and 3 in the hepatic lobule. In zone 1, the reticular distribution of the BC was observed, whereas the part of BC was linearly visualized in zone 3 along the course of sinusoids. When changes in the bile canalicular fluorescence (BCF) were serially evaluated, the BCF was decreased to the minimal level (88% of the value obtained immediately after the LY injection) 10 min after the LY injection, and it tended to increase thereafter. The intralobular hepatocyte fluorescence (ILHF) was decreased to 58.9% of the initial value during the first 40 min. However, the ILHF was transiently increased 30 min after the LY injection, suggesting the possibility of reabsorption of LY by hepatocytes. Three-dimensional (3-D) reconstruction images of the BC facilitated the evaluation of the stereoscopic structure of BC. Confocal laser scanning microscopy facilitated the evaluation of structures and physiologic function of the BC.  相似文献   

18.
Doube M  Firth EC  Boyde A 《Scanning》2005,27(5):219-226
Combined backscattered electron scanning electron microscopy (BSE SEM) and confocal scanning laser microscopy (CSLM) have been used to put tissue mineralization data into the context of soft tissue histology and fluorescent label information. Mineralization density (Dm) and linear accretion rate (LAR) are quantifiable parameters associated with mineralizing fronts within calcified tissues. Quantitative BSE (qBSE) may be used to determine Dm, while CSLM may be used to detect label fluorescence from which LAR is calculated. Eighteen-month old Thoroughbred horses received single calcein injections 19 and 8 days prior to euthanasia, labeling sites of active mineralization with fluorescent bands. Confocal scanning laser microscopy images of articular calcified cartilage (ACC) from distal third metacarpal condyles were registered to qBSE images of the same sites using an in-house program. ImageJ and Sync Windows enabled the simultaneous collection of LAR and Dm data. The repeatability of the registration and measurement protocols was determined. Dm profiles between calcein labels were explored for an association with time. Dm was 119.7 +/- 24.5 (mean +/- standard deviation) gray levels (where 0 = backscattering from monobrominated and 255 from monoiodinated dimethacrylate standards, respectively), while modal and maximum LAR were 0.45 and 3.45 microm/day, respectively. Coefficients of variation (CV) for Dm were 0.70 and 0.77% with and without repeat registration, respectively; CVs for LAR were 1.90 and 2.26% with and without repeat registration, respectively. No relationship was identified between Dm and time in the 11-day interlabel interval. Registration of CSLM to qBSE images is sufficiently repeatable for quantitative studies of equine ACC.  相似文献   

19.
Explorative statistical analysis of planar point processes in microscopy   总被引:2,自引:0,他引:2  
Basic methods of explorative statistical analysis for stationary and isotropic planar point processes are briefly and informally reviewed. At the explorative level, planar point patterns may be characterized in terms of the intensity, the K-function and the pair correlation function. These second-order functions enable one to classify a given point process as completely random, clustering or repulsive. The repulsive behaviour may be quantified by an estimate of the hard-core distance. In the exploratory approach, the statistics are essentially free from model assumptions. Second-order spatial functions have been estimated to characterize genuine planar point processes in the macroscopic domain, for example in forestry, geography and epidemiology. For light microscopy and transmission electron microscopy, two situations are distinguished, which may be summarized as the genuine planar case and the stereological case. In the genuine planar case, a direct interpretation of the results of spatial statistics is feasible. Here, monolayers in cell culture, intramembranous particles on freeze fracture specimens and amacrine cells of the retina are mentioned as examples. In the stereological case, point patterns are generated by sections through 3D structures. Here the observed point patterns may arise as the centres of sectional profiles of particles, or as centres of sectional profiles of spatial fibre processes. In both situations, exploratory spatial point process statistics allow a quantitative characterization of sectional images for the purposes of group comparisons and classification. Moreover, for spatial fibre processes it has recently been shown that the observed pair correlation function of the centres of the fibre profiles is an estimate of the reduced pair correlation function of the fibre process in 3D. Hence for fibre processes a stereological interpretation of point process statistics obtained from sections is an additional option.  相似文献   

20.
The purpose of the present study was a quantitative characterization of the three-dimensional arrangement of the epithelial component of benign and malignant alterations of the female breast by combining stereology with stochastic geometry. Twenty cases of fibrous mastopathy and 20 cases of invasive ductal mammary cancer were studied at the light microscopic level. Segmentation of the epithelial tissue component was performed with an image analyser. From the resulting binary images, unbiased estimates of the covariance C(r) and the intensity Vv of the epithelial volume component were obtained automatically by computer. From these data, estimates of the correlation function k(r), of the pair correlation function g(r), of the radial distribution function RDF(r) and of the reduced second moment function K(r) of epithelial volume were determined. The estimates of C(r) and RDF(r) differed between groups, but these functions depend on spatial pattern and Vv. As carcinomas showed a significantly higher epithelial volume density Vv than mastopathies, estimation of C(r) and RDF(r) alone did not permit a safe distinction between possibly different types of spatial arrangement of epithelium in the benign and malignant lesions. Analysis of the estimates of k(r), g(r) and K(r), which are not influenced by Vv, showed definite interaction between epithelial volume elements, with clustering at short distances and repulsion at long distances. In both groups, the null hypothesis of purely random arrangement of epithelium had to be rejected. The clearest distinction between groups was obtained by estimation of g(r), which showed that short-range, tubular pattern as well as long-range, lobular architecture are better preserved in benign than in malignant lesions. The low interindividual scatter of k(r), g(r) and K(r) indicates a high biological significance of spatial pattern, which is presumably under strict genetic control. Potential uses of the method are: (i) the identification of biomathematical models which could contribute to a better understanding of the growth processes involved, (ii) conditional simulation of the underlying three-dimensional structures by computer, and (iii) supporting the diagnosis of mammary lesions with borderline histopathological appearance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号