首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
The annual heating and cooling potential of an underground air-pipe system has been evaluated in terms of dimensionless parameters of the system. The effect of diurnal and annual variations of environmental parameters (solar radiation, ambient temperature and relative humidity) has been considered. The results are obtained for hot—dry, cold—dry and composite climatic conditions typified by the Jodhpur, Leh and Delhi climates respectively. The effect of suitable earth surface treatments on the thermal performances of the air-pipe system has also been analysed. For wet—shaded earth surface the cooling potential of a pipe of length 50 m and radius 10 cm at a depth 6 m in Jodhpur climate is found to be 4472 kW h, while for the Leh climate under glazed and blackened earth surface conditions the heating potential of such an air-pipe system is found to be 9097 kW h.  相似文献   

2.
In this paper, the results of year round thermal performance of collector of semi-cylindrical solar tunnel dryers (STD) has been presented. The calculations have been made under natural circulation and forced circulation mode. The day-long average of solar irradiance, ambient temperature, rise in the inlet air temperature, natural circulation volume flow rates, and collector efficiency have been calculated for each month of the year. The effect of collector length, cover radius, collector inclination with horizontal have been made for rise in inlet air temperature, volume flow rate and for the efficiency. All calculations have been made for Delhi climate. © 1998 John Wiley & Sons, Ltd.  相似文献   

3.
Ten years' hourly measurements of air and ground temperature values at various depths below bare and short grass soil at Dublin Airport have been used in order to investigate the impact of different ground surface boundary conditions on the efficiency of a single and a multiple parallel earth-to-air heat exchanger system. The heating potential of both these systems buried under bare soil has been assessed and compared with the heating potential of the same systems buried under short-grass-covered soil. The results of this comparison revealed that soil surface cover might be a significant controllable factor for the improvement of the performance of earth-to-air heat exchangers. The heating system consists of a single pipe or multiple parallel pipes laid horizontally, through which ambient or indoor air is propelled and heated by the bulk temperature of the natural ground. The dynamic thermal performance of these systems during the winter period and their operational limits have been calculated using an accurate numerical model. Finally, a sensitivity analysis was performed in order to investigate the effect of the main design parameters, such as pipe length, pipe radius, air velocity inside the tube and the depth of the buried pipe below the earth's surface, on the system heating capacity. Cumulative frequency distributions of the air temperature at the pipe's exit have been developed as a function of the main input parameters.  相似文献   

4.
Incorporating the effect of diurnal variations and annual variations of the environmental parameters (in a way similar to the analysis of amplitude modulation), the performance of an earth-air tunnel of infinite dimension along the horizontal direction has been analysed; dimensionless parameters have been used. The effect of earth storage on the performance of the tunnel has also been taken into account. The effect of modifying the earth's surface conditions, by wetting and shading, on the performance of earth-air tunnel system has also been investigated under two conditions: first when the inlet air is drawn from the ambient, and secondly when it is drawn from a conditioned room for recirculation to the room.  相似文献   

5.
This paper proposes a new and more efficient device for energy transfer over melting ice with performance improved to produce chilled air by complete removal of melt in cool thermal discharge systems. The maximum temperature gradient on the free surface with complete removal of melt in cool thermal discharge systems has a positive influence on energy transfer rate, and hence the application of this concept to design cool thermal discharge systems is technically and economically feasible. Energy equations have been formulated for calculating the thickness of the ice melted and the thermal penetration distance in the ice layer region. The mathematical formulation of cool thermal discharge systems from ice melting with complete removal of melt has been investigated and the approximation solution has been derived with integral boundary-layer analysis. The equations for estimating the required mass flow rate of the ambient air to produce chilled air were derived from an analysis of the heat transfer coupled with the energy balance. Numerical examples with different inlet ambient air temperatures have been illustrated to simulate practical systems, and hence the time histories of the air mass velocity and the outlet temperature of chilled air have been also delineated.  相似文献   

6.
This paper presents the thermal performance, in the heating and cooling of a building, of a double hollow concrete slab, one of whose faces is exposed to solar radiation and ambient air while the other is in contact with room air at constant temperature. A blackwened network of pipes is laid on the top surface and glazed sutiably. the flow rate of water / air through pipes is kept constant. It is seen that there is a time difference of 10-12 h between the maximum/ minimum of the thermal flux extering the room and the solair temperature for any flow rate. the heat flux inside the room is reduced appreciably for higher infiltration when there is no water flow to heat the building. the effect of a water film on the performance of the wall/roof has also been discussed and found to be more effective for the reduction of the heat flux coming into the building.  相似文献   

7.
A solar assisted heat pump dryer has been designed, fabricated and tested. This paper presents the performance of the evaporator-collector and the air collector when operated under the same meteorological conditions. ASHRAE standard procedure for collector testing has been followed. The evaporator-collector of the heat pump is acting directly as the solar collector, and the temperature of the refrigerant at the inlet to the evaporator-collector always remained below the ambient temperature. Because of the rejection of sensible and latent heats of air at the dehumidifier, the temperature at the inlet to the air collector is lower than that of the ambient air. Hence, the thermal efficiency of the air collector also increases due to a reduction of losses from the collector. The efficiencies of the evaporator-collector and the air collector were found to vary between 0.8–0.86 and 0.7–0.75, respectively, when operated under the meteorological conditions of Singapore.  相似文献   

8.
The demand for solar photovoltaic (SPV) systems is growing all over the world due to the continuous increase in the cost of conventional means of power. India has the advantage of around 300 clear sunny days in a year. However, the biggest problem is conversion efficiency. In this paper, an attempt has been made for evaluating the second law efficiency of 160?Wp stand-alone SPV systems installed in RKGIT Ghaziabad premises. The performance of a SPV system depends on climate conditions like temperature, air velocity and a number of sunny days. The solar energy striking the solar panels gets converted into electric and thermal energy. In this work, we have considered the effect of ambient temperature and air velocity on the efficiency of solar panels. The average second law efficiency of SPV systems was found to be 10.7%, whereas maximum second law efficiency was 13.8% at 9am on the same day. The efficiency of the SPV system can be improved by maintaining the temperature of the module.  相似文献   

9.
In the present paper a quasi‐steady state mathematical model is developed to predict the outlet air temperature and monthly heating and cooling potentials of an earth–air heat exchanger. Monthly values of heating and cooling potentials are estimated by rigorous experimentation throughout the year for composite climate of New Delhi. The uncertainty values are calculated for each month; for December the value is 4.9%. It is observed that there is an 8.9 and a 5.9°C temperature rise and fall during winter and summer due to the earth–air heat exchanger buried at a depth of 1.5 m underground. The correlation coefficient, root mean square of percentage deviation, reduced chi‐square and mean bias error have been computed for each month. The values are 1, 3.0%, 0.8 and ?0.63 for December. Statistical analysis shows that there is fair agreement between theoretical results and experimental observations for each month. Monthly values of heating and cooling potentials have also been predicted for other climatic conditions in India namely Jodhpur, Chennai, Mumbai and Kolkata. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

10.
The heat pipe heat exchangers are used in heat recovery applications to cool the incoming fresh air in air conditioning applications. Two streams of fresh and return air have been connected with heat pipe heat exchanger to investigate the thermal performance and effectiveness of heat recovery system. Ratios of mass flow rate between return and fresh air of 1, 1.5 and 2.3 have been adapted to validate the heat transfer and the temperature change of fresh air. Fresh air inlet temperature of 32–40 °C has been controlled, while the inlet return air temperature is kept constant at about 26 °C. The results showed that the temperature changes of fresh and return air are increased with the increase of inlet temperature of fresh air. The effectiveness and heat transfer for both evaporator and condenser sections are also increased to about 48%, when the inlet fresh air temperature is increased to 40 °C. The effect of mass flow rate ratio on effectiveness is positive for evaporator side and negative for condenser side. The enthalpy ratio between the heat recovery and conventional air mixing is increased to about 85% with increasing fresh air inlet temperature. The optimum effectiveness of heat pipe heat exchanger is estimated and compared with the present experimental data. The results showed that the effectiveness is close to the optimum effectiveness at fresh air inlet temperature near the fluid operating temperature of heat pipes.  相似文献   

11.
A mathematical model to simulate the production of chilled air during on-peak power consumption hours in cool–thermal discharge systems with external recycle under melt removal and varied flow rate of flowing air has been developed theoretically. Equations have been derived for estimating the controlling air flow rate when the outlet chilled air temperature is specified. Three cases of inlet ambient temperatures of flowing air were illustrated to study the influence of recycle ratio on the performance improvement of cool–thermal discharge systems, the volumetric flow rate variations and Nusselt number increment due to a larger convective heat transfer rate were also delineated.  相似文献   

12.
As a renewable energy technology, ground source heat pump (GSHP) system is high efficient for heating and cooling in office buildings. However, this technology has strong dependence on the meteorological and building envelope thermal characteristic parameters. For the purpose of quantitative investigation on the feasibility and performance GSHP, three cities located in cold climate zone, Qiqihaer, Shenyang and Beijing, were sampled. Firstly, the office building dynamic loadings in these cities were calculated on basis of the different meteorological and envelope thermal characteristic parameters. The TRNSYS, one kind of energy simulation software, were employed to simulate the operation performances of GSHP on basis of these parameters. The simulation revealed the data on the outlet/inlet temperature of buried pipes, soil temperature, energy consumption distribution and the coefficient of performance (COP) for one year operation. Furthermore, ten years operation was also simulated to show the stability of the performance based on the outlet/inlet temperature of buried pipes and soil temperature. From these results, the GSHP had shown its most suitable performance in Beijing, second in Shenyang and worst in Qiqihaer. These results could be used as a reference on suitable utilization of GSHP systems in office buildings located in cold climate zone, China.  相似文献   

13.
In the present work a comparative study for thermal and electrical performance of different hybrid photovoltaic/thermal collectors designs for Iraq climate conditions have been carried out. Four different types of air based hybrid PV/T collectors have been manufactured and tested. Three collectors consist of four main parts namely, channel duct, glass cover, axial fan to circulate air and two PV panels in parallel connection. The measured parameters are, the temperature of the upper and the lower surfaces of the PV panels, air temperature along the collector, air flow rate, pressure drop, power produced by solar cell, and climate conditions such as wind speed, solar radiation and ambient temperature. The thermal and hydraulic performances of PV/T collector model IV have been analyzed theoretically based on energy balance. A Matlab computer program has been developed to solve the proposed mathematical model.The obtained results show that the combined efficiency of collector model III (double duct, single pass) is higher than that of model II (single duct double pass) and model IV (single duct single pass). Model IV has the better electrical efficiency. The pressure drop of model III is lower than that of models II and IV. The root mean square of percentage deviations for PV outlet temperature, and thermal efficiency of model IV are found to be 3.22%, and 18.04% respectively. The calculated linear coefficients of correlation (r) are 0.977, 0.965 respectively.  相似文献   

14.
The integration of an aqua‐ammonia inlet air‐cooling scheme to a cooled gas turbine‐based combined cycle has been analyzed. The heat energy of the exhaust gas prior to the exit of the heat recovery steam generator has been chosen to power the inlet air‐cooling system. Dual pressure reheat heat recovery steam generator is chosen as the combined cycle configuration. Air film cooling has been adopted as the cooling technique for gas turbine blades. A parametric study of the effect of compressor–pressure ratio, compressor inlet temperature, turbine inlet temperature, ambient relative humidity, and ambient temperature on performance parameters of plants has been carried out. It has been observed that vapor absorption inlet air cooling improves the efficiency of gas turbine by upto 7.48% and specific work by more than 18%, respectively. However, on the adoption of this scheme for combined cycles, the plant efficiency has been observed to be adversely affected, although the addition of absorption inlet air cooling results in an increase in plant output by more than 7%. The optimum value of compressor inlet temperature for maximum specific work output has been observed to be 25 °C for the chosen set of conditions. Further reduction of compressor inlet temperature below this optimum value has been observed to adversely affect plant efficiency. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

15.
Centrifugal fans are often integrated into thermal management solutions for a range of applications. Consequently, centrifugal fan designs can be subjected to varying environmental conditions, many of which can alter fan performance characteristics and ultimately influence the heat transfer performance of the cooling solution. Global cross flows are a commonly encountered practical operating condition, particularly in the cooling of electronics. Air-cooled electronic enclosures often incorporate miniature centrifugal fans to maintain reliable component operating temperatures at a local level, while larger system level fans are used to simultaneously control the ambient temperature within the enclosure. This type of operating condition has been investigated by introducing a uniform crossing air flow above a centrifugal fan inlet. Two scaled miniature centrifugal fan designs were selected to fundamentally assess the influence on local velocity field and heat transfer performance. This was achieved experimentally using Particle Image Velocimetry, and a combined infrared and heated-thin-foil technique developed for the accurate measurement of local heat transfer coefficients. the introduction of a crossing air flow above the fan inlet indirectly reduced both the local and global thermal performance of the centrifugal fan, and the resultant distorted inflow shifted the surface heat transfer distribution at the fan outlet from an axisymmetric to asymmetric profile. However, strategic positioning of components relative to a centrifugal fan can maintain the average component heat transfer coefficient at a similar level to a case without any cross flow. Results also indicate issues associated with the implementation of miniature centrifugal fan designs into crossing air flow environments, with reductions in thermal performance of over 30% observed.  相似文献   

16.
The effect of elevated inlet air temperature and relative humidity on a gas turbine (GT) cogeneration system performance was investigated. The analysis was carried out on a GT of a capacity 171 MW at ISO condition, which is integrated with a dual pressure heat recovery steam generator (HRSG), the cogeneration system had been tested under Kuwait summer climate conditions. A computational model was developed and solved using engineering equation solver professional package to investigate the performance of a dual pressure GT‐HRSG system. The suggested HRSG is capable of producing high‐pressure superheated steam at 150 bar and 510°C to operate a power generation steam turbine cycle, and a medium pressure saturated steam at 15 bar to run a thermal vapor compression (TVC) desalination system. In this research, the influence of elevated inlet air temperature and relative humidity on the energy assessment of the suggested cogeneration system was thoroughly investigated. Results indicated that operating GT under elevated values of inlet air temperatures is characterized by low values of net power and thermal efficiency. At elevated inlet air temperatures, increasing relative humidity has a small positive impact on GT cycle net power and thermal efficiency. Integrating the GT with HRSG to generate steam for power generation and process heat tends to increase energy utilization factor of the system at elevated inlet air temperatures. Increasing inlet air temperature plays a negative impact on power to heat ratio (PHR), while relative humidity has no effect on PHR. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
To increase the driving range of electric vehicles in cold climate, air conditioning heat pump (ACHP) system is supposed to be the most effective solution. Working near 0°C with high humidity, the microchannel outdoor heat exchanger (OHX) in system would experience badly frosting process, like traditional residential heat pump system. It would lead to a significant reduction of system performance without defrosting in time. In this article, experimental investigation has been implemented on the frosting process of ACHP system of electric vehicles which is with a microchannel OHX. The phenomenon of frosting distribution was observed, the frosted part on surface shows uneven with various flows paths. The typical frosting characteristics of an outdoor microchannel heat exchanger were also obtained. In a self-designed three-heat exchanger ACHP system, the inlet and outlet refrigerant temperature of OHX as well as the outlet air temperature of system decrease with increasing frosting coverage rate. The frosting phenomenon was analyzed with variation of ambient temperature and humidity. System influence by frosting was also studied with under different ambient conditions. When OHX begins to frost, the heating capacity reduction of system under different ambient conditions were both increased but the differences in the coefficient of performance (COP) variations under different ambient conditions were small as frosting progressed.  相似文献   

18.
The use of earth to air heat exchangers has gained an increasing acceptance during the recent years. However, there is a lack of calculation models coupling the performance of the exchangers with the building. The present paper deals with the development of a new integrated method to calculate the contribution of the earth to air heat exchangers to reduce the cooling load of the buildings. The method is based on the principle of balance point temperature and permits the calculation of the hourly value of the balance temperature of the building as well as the daily cooling load of the building and the contribution of the buried pipes. An extensive validation procedure has been followed using data from an extended version of TRNSYS including detailed routines to simulate dynamically the performance of earth to air heat exchangers. It is found that the method is of sufficient accuracy and, therefore, can be used during the predesign and design phase for the dimensioning of the buried pipes.  相似文献   

19.
G. Mihalakakou   《Renewable Energy》2003,28(6):917-927
The present paper deals with the heating potential of a single buried pipe using real climatic data. The use of buried pipes in buildings for heating and cooling purposes has gained increasing acceptance in recent years. The system’s heating potential was calculated using an accurate, dynamic, deterministic, numerical model. Multiyear ambient air and soil climatic data for the city of Athens have been used as inputs to the deterministic model and the results were compared. Furthermore, a neural network approach was used for estimating the thermal performance of the system in heating for the city of Athens. Moreover, the influence of several climatic parameters used as inputs to the neural model such as the ambient air temperature, the ground temperature and the relative humidity is investigated and analysed.  相似文献   

20.
By solving the heat-conduction equation with polynomial driving functions, the time evolution of the thermal fluxes for external surface excitations representative of different ambient conditions has been obtained. The error involved in the determination of the initial thermal profile of the wall and the ‘numerical coupling’ between successive periods, such as the diurnal and nocturnal ones, have been considered. Also, the case in which the surface temperature is assumed to be ‘floating’ with a specified inner ambient temperature has been analysed. The proposed method is well adapted for the treatment of non-repetitive ambient conditions. We suggest applications for conventional walls.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号