首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
o-Cresol novolac-type epoxy resins having hydroxymethyl group were synthesized. These epoxy resins were cured with a mixture of 4,4′-diaminodiphenylmethane and m-phenylenediamine (molar ratio, 6:4) as a hardener. Effects of molecular weight distribution of epoxy resins on curing behavior were studied. Curing behavior of epoxy resins with hardener were examined by differential scanning calorimetery (DSC), and cure reaction parameters were obtained. Viscoelastic properties of the cured epoxy resins were studied by dynamic mechanical analyzer. It was found that the lower the average molecular weight of the epoxy resin, that is, the higher the concentration of hydroxymethyl group, the shorter the onset time of exothermal reaction, the higher the rate constant (k), and the lower the activation energy (Ea) were. It was also found that glass transition temperature (Tg) of fully cured epoxy resins was higher than those of fully cured general novolac-type epoxy resins.  相似文献   

2.
A new type of epoxy resin having hydroxymethyl group was synthesized. This epoxy resin was mixed with commercial epoxy resin in various ratios. The mixed epoxy resins were cured with a mixture of 4,4′-diaminodiphenylmethane and m-phenylenediamine (molar ratio, 6 : 4) as a hardener. Curing behavior of the epoxy resin systems with the hardener was examined by DSC and TG-DSC, and parameters of cure reaction were obtained. Viscoelastic properties of cured resin were studied by dynamic mechanical analyzer. It was found that the higher the amount of epoxy resin having hydroxymethyl group, the lower the activation energy (Ea) and the higher the rate constant (k) were. It was also found that the higher the amount of the epoxy resin having hydroxymethyl group, the better heat resistance the fully-cured resin had. These results were explained as follows: Hydroxymethyl group accelerated an epoxideamine reaction. The crosslinking density of the cured resin was increased because in the hydroxymethyl group occurred a condensation reaction above 200°C.  相似文献   

3.
Cobalt acrylate (CoA2) has been treated with bisphenol‐A and epichlorohydrin to modify epoxy resins. It was cured with p‐acetylbenzilidene triphenyl arsonium ylide. The properties such as epoxide equivalent weight (equiv/100 g), molecular weight, hydrolyzable chlorine content increases whereas hydroxyl content, refractive index decreases in the presence of CoA2. The cured epoxy resins shows improve electrical conductivity due to the incorporation of CoA2 with epoxy resins. The influence of complex formation of CoA2 with either linkage of epoxy resins were investigated by spectroscopy. The decrease in Tg from differential scanning calorimetry support the improve in flexibility. The dispersion of cobalt in epoxy resins matrix was confirmed by scanning electron microscope. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

4.
The relation between the structure and viscoelastic properties of the epoxy resins prepared from o-cresol novolacs was studied. Our model epoxy resins were two kinds of epoxy compounds synthesized from three-nuclei and four-nuclei o-cresol novolacs. In addition to these models, a commercially available o-cresol novolac-type epoxy resin was also studied. Each of the three epoxy compounds was cured with one of three kinds of novolacs, which were starting materials of the above-mentioned epoxy resins. Characteristic properties of the cured resins, such as glass transition temperature (Tg), average molecular weight between crosslinking points (M¯c), and front factor (?) were obtained. It was concluded that the number of functional groups contained in the curing system almost dominated the viscoelastic properties of the cured resins.  相似文献   

5.
A novel, halogen‐free, phosphorus–nitrogen containing flame retardant 2[4‐(2,4,6‐Tris{4‐[(5,5‐dimethyl‐2‐oxo‐2λ5‐[1,3,2]dioxaphosphinan‐2‐yl)hydroxymethyl]phenoxy}‐(1,3,5)‐triazine (TNTP) was successfully synthesized in a three‐step process, and characterized by FTIR, NMR spectroscopy, mass spectra, and elemental analysis. A series of modified DGEBA epoxy resin with different loadings of TNTP were prepared and cured by 4,4‐diaminodiphenylsulfone (DDS). Thermal gravimetric analysis and vertical burning test (UL‐94) were used to evaluate the flame retardancy of TNTP on DGEBA epoxy resin. The results showed that TNTP had a great impact on flame retardancy. All modified thermosets by using TNTP exhibited higher Tg than pure DGEBA/DDS. The loading of TNTP at only 5.0 wt % could result in satisfied flame retardancy (UL‐94, V‐0) together with high char residue (27.3%) at 700°C. The addition of TNTP could dramatically enhance the flame retardancy of DGEBA epoxy resins, which was further confirmed by the analysis of the char residues by scanning electron microscopy and FTIR. Furthermore, no obviously negative effect was found on the Izod impact strength and flexural property of DGEBA epoxy resins when TNTP loading limited in 5.0 wt %. DGEBA/DDS containing 2.5 wt % TNTP could enhance Izod impact strength from 10.47 to 10.94 kJ m?2, and showed no appreciable effect on the flexural property (85.20 MPa) comparing with pure DGEBA/DDS (87.03 MPa). Results indicated that TNTP as a phosphorus–nitrogen synergistic intumescent flame retardant could be used for DGEBA epoxy resin. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 41079.  相似文献   

6.
In order to give a toughness and improve adhesion properties of the cured epoxy system, modified epoxy resins, which have pre-reacted urethane microspheres formed using dynamic vulcanization method in liquid diglycidylether of bisphenol A, were prepared. It was found that the size of the particles decreased to sub-micro order with increase in solubility of urethane oligomers in epoxy resin, and coefficient of variance in the particle size distribution resulted in less than 15%. Fracture energy G1c of the cured system was highly improved. Lap shear strength and peel strength were also improved. These mechanical and adhesion properties do not depend on any curing condition of epoxy resin because of the existing stable particles in the epoxy resin before curing.  相似文献   

7.
Guoyuan Pan  Chen Zhang  Xiaoping Yang 《Polymer》2007,48(13):3686-3693
A series of novel novolac epoxy resins containing naphthalene moiety with different molecular weights were synthesized via condensation of bisphenol A and 1-naphthaldehyde, followed by epoxidation with epichlorohydrin. The chemical structure of the naphthalene epoxy thus obtained was characterized using FTIR, 1H NMR spectra and GPC analyses. The naphthalene epoxy was cured with 4,4′-diaminodiphenyl sulfone (DDS) and the cured products were characterized with thermogravimetric analysis, dynamic mechanical analysis, and X-ray diffraction. Compared with the diglycidyl ether of bisphenol A (DGEBA), the cured naphthalene epoxy resin showed remarkably higher glass transition temperatures (Tgs), enhanced thermal stability and better moisture resistance. When the molar ratio of 1-naphthaldehyde to bisphenol A was 0.67, the optimal thermal resistance was observed.  相似文献   

8.
The relation between the structure and the viscoelastic properties of seven kinds of epoxy resins was studied. Seven tetraglycidylethers were synthesized from four-nuclei novolacs in which the positions of methylene linkage or number of kind of substituents were different. These epoxy compounds were cured with diaminodiphenylmethane as a hardener. From the viscoelastic properties of the fully cured resins with the hardener, characteristic properties such as glass transition temperature (Tg), average molecular weight between crosslinking points (M̄c), and front factor (ϕ) were obtained. It was concluded that higher linearity in the main chain of epoxy resins gave a cured resin with a higher Tg, a smaller M̄c, and a larger ϕ.  相似文献   

9.
A novel epoxy resin modifier, phosphorus‐containing epoxide siloxane (DPS) with cyclic phosphorus groups in the Si O network, was prepared from the reaction of 9,10‐dihydro‐9‐oxa‐10‐phosphaphenanthrene‐10‐oxide (DOPO) with polyhedral‐oligomeric siloxanes, which was synthesized by the sol–gel reaction of 3‐glycidoxypropyltrimethoxysilane. DPS was confirmed by Fourier transform infrared and 29Si NMR measurement, and then was employed to modify epoxy resin at various ratios, with 4,4‐diaminodiphenyl‐methane as a curing agent. In order to make a comparison, DOPO‐containing epoxy resins were also cured under the same conditions. The resulting organic–inorganic hybrid epoxy resins modified with DPS exhibited a high glass transition temperature (Tg), a good thermal stability, and a high limited oxygen index. In addition, the tensile strength of cured products was also rather desirable. POLYM. COMPOS., 2010. © 2009 Society of Plastics Engineers  相似文献   

10.
Dispersed silicone rubbers were used to reduce the stress of cresol–formaldehyde novolac epoxy resin cured with phenolic novolac resin for electronic encapsulation application. The effects of structure, molecular weight, and contents of the vinylsiloxane oligomer on reducing the stress of the encapsulant were investigated. Morphology and dynamic mechanical behavior of rubber-modified epoxy resins were also studied. The dispersed silicone rubbers effectively reduce the stress of cured epoxy resins by reducing flexural modulus and the coefficient of thermal expansion (CTE), whereas the glass transition temperature (Tg) was hardly depressed. Electronic devices encapsulated with the dispersed silicone rubber modified epoxy molding compounds have exhibited excellent resistance to the thermal shock cycling test and have resulted in an extended device use life. © 1994 John Wiley & Sons, Inc.  相似文献   

11.
The properties of epoxy resins containing arsenic acrylate have been compared with that of a blank epoxy resin (DGEBA). The values of epoxide equivalent, hydroxyl content, hydrolyzable chlorine content, and specific gravity increased, whereas refractive index decreased in the epoxy resins containing arsenic acrylate (AsA3). This is attributed to a complex formation between an As and an oxygen atom in the resin, as evidenced from IR spectroscopy. The reaction is first order (ER3) with an activation energy of 53 kJ/mole. The epoxy resin with As cured with polyamide at 30°C, showed chemical resistance and excellent thermal stability compared with blank epoxy resin (epoxy resin without As).  相似文献   

12.
The tensile properties: Young's modulus, ultimate tensile strength, ultimate elongation, the glass transition temperature, and the dynamic mechanical properties (dynamic shear modulus (G'), loss tangent (Tan δ)), of three epoxy resins (Epon 828, Epon 836, Epon HPT 1071) cured with the disulfide-containing crosslinking agent—4.4-dithiodianilme (DTDA) have been characterized. The results show that DTDA is a satisfactory crosslinking agent for the epoxide resins that have been studied as compared to the well-known curing agent methylene dianiline (MDA). There are no significant differences between the properties of Epon 828 cured with DTDA at stoichiometric ratio (2:1) and Epon 828 cured with DTDA at small amine excess ratio (1.75:1). The glass transition temperature of the cured tetrafunctional epoxy resin Epon HPT 1971 (235°C) is significantly higher than that of difunctional epoxy resins such as Epon 828 (Tg–175°C), but the product is too brittle to be used without plasticizer.  相似文献   

13.
Improving properties of polyurethane (PU) elastomers have drawn much attention. To extend the properties of the modified PU composite, here a new method via the reaction of poly(urethane‐imide) diacid (PUI) and silane‐modified epoxy resin (diglycidyl ether of bisphenol A) was developed to prepare crosslinked poly (urethane‐ imide)/epoxy/silica (PUI/epoxy/SiO2) hybrids with enhanced thermal stability. PUI was synthesized from the reaction of trimellitic anhydride with isocyanate‐terminated PU prepolymer, which was prepared from reaction of polytetramethylene ether glycol and 4,4′‐diphenylmethane diisocyanate. Thermal and mechanical properties of the PUI/epoxy/SiO2 hybrids were investigated to study the effect of incorporating in situ SiO2 from silane‐modified epoxy resin. All experimental data indicated that the properties of PUI/epoxy/SiO2 hybrids, such as thermal stability, mechanical properties, were improved due to the existence of epoxy resin and SiO2. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

14.
A series of different type of epoxy resins containing metal(s) have been prepared by the using cobalt acrylate (CoA2), nickel acrylate(NiA2),bismuth acrylate (BiA3) during resinification. The values of epoxide equivalent weight, chlorine content increases whereas hydroxyl content, refractive index decreases in the presence of metal acrylate(s). The influence of complex formation of metal acrylate with ether linkage of epoxy resins were investigated by spectroscopy. Epoxy resins containing cobalt acrylate which was cured by p‐acetylbenzilidinetriphenylarsoniumylide (p‐ABTAY) shows better conducting properties in comparison to NiA2 and BiA3 containing epoxy resins. The dispersion of metal(s) in epoxy resins matrix was confirmed by scanning electron microscope (SEM). The glass transition temperature of epoxy resins containing CoA2 is lower than that of blank epoxy resins and epoxy resins containing bismuth and nickel acrylate. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

15.
Preparation and characterization of novel cycloaliphatic epoxy resins, which are derived from octadienyl compounds, were studied. From a model peracetic acid epoxidation reaction using 2,7-octadienyl acetate-1, the structure of the liquid resins is estimated to be mainly terminal epoxides and some amount of inner epoxide depending on the epoxide content. The epoxy resins offer lower toxicity and lower vapor pressure. The reactivity of the resin with acid anhydrides is moderate but faster than that of traditional cyclohexane epoxide-type resins and slower than that of the glycidyl ester-type resins. This reactivity was also examined using model compounds. The heat deflection temperature of the hexahydro-phthalic anhydride-cured resins is shown to be directly proportional to the number of epoxy groups in the molecules. The flexural strength of the cured resins is nearly equivalent to that of the commercial resins, although the flexural elongation of the resins is larger than that of the rigid cyclohexane epoxide-type resins. The thermal stability of the cured resins is comparable to typical rigid cycloaliphatic resins; furthermore, high water resistance of the cured resins is suggested to be attributed to the hydrophobic character of the C8 chain by cross-linking. © 1993 John Wiley & Sons, Inc.  相似文献   

16.
Liquid nitrile rubber, hyperbranched polyester, and core/shell rubber particles of various functionality, namely, vinyl, carboxyl, and epoxy, were added up to 20 wt % to a bisphenol‐A‐based vinylester–urethane hybrid (VEUH) resin to improve its toughness. The toughness was characterized by the fracture toughness (Kc) and energy (Gc) determined on compact tensile (CT) specimens at ambient temperature. Toughness improvement in VEUH was mostly achieved when the modifiers reacted with the secondary hydroxyl groups of the bismethacryloxy vinyl ester resin and with the isocyanate of the polyisocyanate compound, instead of participating in the free‐radical crosslinking via styrene copolymerization. Thus, incorporation of carboxyl‐terminated liquid nitrile rubber (CTBN) yielded the highest toughness upgrade with at least a 20 wt % modifier content. It was, however, accompanied by a reduction in both the stiffness and glass transition temperature (Tg) of the VEUH resin. Albeit functionalized (epoxy and vinyl, respectively) hyperbranched polymers were less efficient toughness modifiers than was CTBN, they showed no adverse effect on the stiffness and Tg. Use of core/shell modifiers did not result in toughness improvement. The above changes in the toughness response were traced to the morphology assessed by dynamic mechanical thermal analysis (DMTA) and fractographic inspection of the fracture surface of broken CT specimens. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 84: 672–680, 2002; DOI 10.1002/app.10392  相似文献   

17.
A series of phenol‐based and naphthol‐based aralkyl epoxy resins were synthesized by the condensation of p‐xylylene glycol with phenol, o‐cresol, p‐cresol, or 2‐naphthol, respectively, followed by the epoxidation of the resulting aralkyl novolacs with epichlorohydrin. The incorporation of stable dispersed polysiloxane thermoplastic polyurethane particles in the synthesized epoxy resin's matrix was achieved via epoxy ring‐opening with the isocyanate groups of urethane prepolymer to form an oxazolidone. The mechanical and dynamic viscoelastic properties of cured aralkyl novolac epoxy resins were investigated. A sea‐island structure was observed in all cured rubber‐modified epoxy networks via SEM. The results indicate that a naphthalene containing aralkyl epoxy resin has a low coefficient of thermal expansion, heat resistance, and low moisture absorption, whereas phenol aralkyl type epoxy resins are capable of imparting low elastic modulus result in a low stress matrix for encapsulation applications. Modification of the synthesized aralkyl epoxy resins with polysiloxane thermoplastic polyurethane have effectively reduced the stress of cured epoxy resins, whereas the glass transition temperature was increased because of the formation of the rigid oxazolidone structure. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 1905–1916, 1999  相似文献   

18.
The liquefied corn barn-based epoxy resin (LCBER) was synthesized through the glycidyl etherification reaction from liquefied corn barn (LCB), which has groups of bound phenol, and epichlorohydrin under alkali conditions. The average molecular weights of LCB and LCBER in various liquefaction conditions were examined. The thermodynamic properties of thermosetting resin cured by polyamide-650 (PA-650) were evaluated. It was found that the macromolecular chain and epoxy function of the resins would be a dominant factor for crosslinking density and properties of the cured LCBER. The cured liquefied CB-based epoxy resin (LCBER-30) using the corresponding LCB at 30 min (LCB-30) as raw materials had much macromolecular exhibited higher glass-transition and decomposition temperatures at 5% weight loss (Td), but worse shear strength in comparison with the other LCBER ones. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

19.
The study synthesized a trifluoromethyl (CF3) groups with a modified epoxy resin, diglycidyl ether of bisphenol F (DGEBF), using environmental friendly methods. The epoxy resin was cured with 4,4′‐diaminodiphenyl‐methane (DDM). For comparison, this study also investigated curing of commercially available diglycidyl ether of bisphenol A (DGEBA) with the same curing agent by varying the ratios of DGEBF. The structure and physical properties of the epoxy resins were characterized to investigate the effect of injecting fluorinated groups into epoxy resin structures. Regarding the thermal behaviors of the specimens, the glass transition temperatures (Tg) of 50–160°C and the thermal decomposition temperatures of 200–350 °C at 5% weight loss (Td5%) in nitrogen decreased as amount of DGEBF increased. The different ratios of cured epoxy resins showed reduced dielectric constants (Dk) (2.03–3.80 at 1 MHz) that were lower than those of pure DGEBA epoxy resins. Reduced dielectric constant is related to high electrronegativity and large free volume of fluorine atoms. In the presence of hydrophobic CF3 groups, the epoxy resins exhibited low moisture absorption and higher contact angles. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

20.
Poly(aryl ether ketone)s were used as modifiers for bisphenol-A diglycidyl ether epoxy resin (AER 331) cured with methyl hexahydrophthalic anhydride. Poly(phthaloyl diphenyl ether) (PPDE), soluble in the uncured epoxy resin without using solvents, was prepared by the Friedel-Crafts reaction of phthaloyl chloride and diphenyl ether. The mechanical, thermal, and dynamic viscoelastic properties of the modified resins with PPDE were examined and compared to the parent resin (AER 331). The fracture toughness, KIC, for the modified resins increased at no expense to their mechanical and thermal properties on 10 wt % addition of PPDE with molecular weights of more than 17,000. The toughening mechanism is discussed based on the morphological and dynamic viscoelastic behaviors of the modified epoxy resin system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号