首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The dynamic rheological behavior was investigated for binary polypropylene (PP) - polyamide-6 (PA-6) and ternary PP-PA-6-glass fiber (GF) blends. The observed trends are related to the blend morphology and the partitioning of the GF within the three component blends. The dynamic and shear viscosity results show a good overlap for the PP homopolymer, within the shear rates studied. The addition of PA-6 and/or glass fibers to the PP causes significant deviations between the two rheological behaviors. This reflects the fibrillation of PA-6 and the orientation of glass fibers during shear rheometry, which reduce the blends' shear viscosity. The effect of PA-6 content on dynamic viscosity is less significant than for shear viscosity, owing to the absence of morphological structuring. The addition of PA-6 to PP increased the principal relaxation time of the binary blends. The addition of GF to these binary blends gave a further increase in the principal relaxation time.  相似文献   

2.
The morphology of polyamide 1010/polypropylene blends was found to significantly depend upon the concentration of the compatibilizer[polypropylene-grafted-acrylic acid (PP-g-AA)]. A significant reduction in phase size was observed because of the interaction that existed between the PP-g-AA and polyamide. These interactions have been confirmed by several methods. The tensile mechanical properties and impact behavior of the prepared blends were investigated and correlated with scanning electron microscope (SEM) analysis of the fracture surfaces. It was found that PP-g-AA as the compatibilizer has a profound effect upon the properties of the blends. This behavior is attributed to a series of chemical and physico-chemical interactions taking place between the two components.  相似文献   

3.
4.
Simple blends with different viscosity ratios of the components as well as compatibilized blends varying both in type and content of the compatibilizers were used to study the relation between the interfacial tension and the dispersed‐phase particle size for PP/PA6 (80/20 wt %) blends in this work. Four compatibilizing systems including poly(ethylene‐co‐methacrylic acid) ionomers, a maleic anhydride‐grafted propylene copolymer, maleic anhydride‐grafted polypropylene, and a maleic anhydride‐grafted styrene ethylene butylene copolymer were used. For blends prepared in an internal mixer, a power‐law relation was found between the capillary number and the torque ratio of the blends' components. This relation was used to estimate the interfacial tension for the compatibilized blends. The relation between the steady‐state torque of the blends as a measure of viscosity and the estimated values of interfacial tension were also investigated. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 54–63, 2003  相似文献   

5.
The influence of compatibilization on the dynamic mechanical properties of polypropylene (PP) binary blends with polyamide‐6 (PA6), Talc, and oxidized PP (OPP) was investigated. The oxidation of PP homopolymer was performed in a internal mixer by using air as a oxidizing agent (under atmospheric pressure) and dodecanol‐1 as an accelerator at 180°C for 6½ h [Abdouss, M.; Sharifi‐Sanjani, N.; Bataille, P. J Appl Polym Sci 1999, 36, 10]. In the blends, OPP was used as a blend component and compared with PP over the whole concentration range. Pressed film blends of PP/OPP, PP/OPP/Talc, and PP/OPP/PA6 were examined by dynamic mechanical analyzer, thermal gravimetry analysis, and scanning electron microscopy. Mechanical properties such as tensile strength, modulus of elasticity, elongation, melt flow index, and hardness of the blends were measured. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 2871–2883, 2004  相似文献   

6.
Summary Aim of this work was to study the effectiveness of a novel oxazoline-functionalized polypropylene as a compatibilizer for PP/PBT and PP/PA6 blends. This polypropylene-based compatibilizer mixes well with the polypropylene and is capable of reacting with the carboxylic and amine end groups of PBT and PA6. Significant improvements in blend toughness were achieved without reduction in strength and stiffness. These effects were related to stabilized morphology of finely dispersed minor phase well attached to the matrix. The enhanced interfacial interactions between the two phases, in particular at high PBT content were evidenced by increased melt viscosity.  相似文献   

7.
Fracture toughness of injection-molded PA6/PP blends compatibilized with SEBS-g-MA was studied using deeply double-edge notched tension (DDENT) specimens according to the essential work of fracture procedure. The fracture mechanical studies also included tensile impact tests on the DDENT specimens and characterization of the fracture surfaces by electron microscopy. The results were compared with those of traditional tensile tests and Izod impact tests on single-edge notched samples, and the sensibility of the methods was evaluated. Effects of sample position, ligament length, testing direction, and test speed were studied as well. It was found that the essential work of fracture concept, earlier applied to thin sheets, can also be applied to injection-molded tough blends. High deformation of the skin may, however, interfere with the measurements and cause a “tail” in the load-deformation curves. The plastic work of fracture (wp) was found to correlate with the impact strength, and thus, it described the toughness. The highest values for work of fracture were recorded for the compatibilized blend with a PA6/PP ratio of 80/20. The essential work of fracture (we) in turn increased with increasing PA6 content and behaved like tensile strength. The test speed was found to affect the fracture behavior substantially: differences between the materials were more pronounced in high-speed tensile impact tests, which revealed signs of cavitation in addition to large-scale plastic deformation for the tough PA6-rich blend compositions. © 1997 John Wiley & Sons, Inc. J Appl Polym Sci 66: 2209–2220, 1997  相似文献   

8.
Dean Shi  Guo-Hua Hu  Zhuo Ke  Jinghua Yin 《Polymer》2006,47(13):4659-4666
This paper deals with the dynamic rheological behavior of polypropylene/polyamide6 (PP/PA6) uncompatibilized blends and those compatibilized with a maleic anhydride grafted PP (PP/PP-g-MAH/PA6). The terminal relaxation times of the blends predicted by the Palierne emulsion model were compared with those obtained from experimental relaxation time spectra. The Palierne model succeeded well in describing PP/PA6 uncompatibilized blends with relatively low dispersed phase contents (10 wt%) and failed doing so for those of which the dispersed contents were high (30 wt%). It also failed for the compatibilized ones, irrespective of the dispersed phase content (10 or 30 wt%) and whether or not interface relaxation was taken into consideration. In the case of the uncompatibilized blend with high dispersed-phase content, interconnections among inclusions of the dispersed phase were responsible for the failure of the Palierne model. As for the compatiblized blends, in addition to particle interconnections, the existence of emulsion-in-emulsion (EE) structures was another factor responsible for the failure of Palierne model. A methodology was developed to use Palierne emulsion model upon taking into account the effects of the EE structure on the viscosity of the continuous phase and the effective volume fraction of the dispersed phase.  相似文献   

9.
以4种弹性体接枝马来酸酐(MAH)共聚物作为聚丙烯/聚酰胺6(PP/PA6)共混体系的增容剂,从界面相互作用、形态结构和力学性能等方面比较了它们的增容作用。乙烯-辛烯共聚物接枝马来酸酐(POE-g-MAH)和乙丙三元共聚物接枝MAH(EPDM-g-MAH)使PP与PA6两相间的界面相互作用增强,增容效果较好;POE-g-MAH为增容剂时,PA6粒子分布较均匀,粒径约为1μm。POE-g-MAH能明显改善PP/PA6共混体系的韧性和强度,具有良好的增容作用。当w(POE-g-MAH)为10%时,w(PA6)为60%的共混体系拉伸强度最高,达到53.4MPa;适当增加PA6用量,可明显改善共混体系的流动性。  相似文献   

10.
The effectiveness of a commercial ethylene-glycidylmethacrylate copolymer (Lotader GMA AX 8840) as a compatibilizer precursor (CP) for blends of low density polyethylene (LDPE) with polyamide-6 (PA) has been evaluated by an investigation of the thermal properties and the morphology of binary (LDPE/CP and PA/CP) and ternary (LDPE/PA/CP) blends, as well as by solvent fractionation experiments. It has been demonstrated that the epoxy groups of the CP react quite easily, during melt blending, with both the amine and the carboxyl end groups of PA to give CP-g-PA copolymers, which, depending on the relative amounts of PA and CP, may be partially cross-linked. The composition of the graft copolymers has been approximately determined by gravimetric and calorimetric measurements. The compatibilizing efficiency of the CP employed in this work has been found to be comparable to that of the ethylene-acrylic acid copolymers, and lower than that of a maleic anhydride-functionalized polyethylene, which had been used in previous works.  相似文献   

11.
Polyamide 6 (PA6) nanofibers were prepared by the melt blending extrusion process of PA6/cellulose acetate butyrate (CAB) immiscible polymer blends. The average diameter of obtained PA6 nanofibers was 95–190 nm which could be controlled by varying the process conditions, such as blend ratio was 10/90‐40/60, shear rate was 10 and 80 s?1and two different blending equipments, and the effect of adding graphene for the diameters was also discussed. In addition, and the formation mechanism of nanofibers was studied by viscoelastic analysis and collecting samples at four different sites along the extruder. The morphology of PA6 dispersed phase in CAB matrix included three stages: PA6 pellets changed into sheets or ribbons, the formation of microfibers and size reduction, the size of microfibers continued refinement to nanofibers. The morphology development of dispersed phase may be postponed by blend ratio. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42184.  相似文献   

12.
以马来酸酐(MAH)、苯乙烯(St)多单体熔融接枝聚丙烯(PP)[PP—g-(MAH-co—St)]为增容剂改性聚酰胺(PA)6/PP体系,制备了PA6/PP合金,研究了合金的流变性能。结果表明,PP—g-(MAH—co—St)增容的PA 6/PP共混物熔体属假塑性流体,熔体黏度随PP-g-(MAH—co—St)含量的增加逐渐增大。在较低剪切速率(99.90s^-1)下,体系分散相PP的粒径尺寸较小:剪切速率从99.90s^-1到706.50s^-1,分散相粒径增加:剪切速率从706.50s^-1增到5002.65s^-1,分散相粒径又相对减小。  相似文献   

13.
反应增容PP/PA 6共混体系的形态与性能   总被引:1,自引:0,他引:1  
采用侧向注入增容剂和直接混合的方法制备了不同配比的聚丙烯(PP)/马来酸酐接枝聚丙烯(PP-g-MAH)/聚酰胺(PA) 6共混物.考察了侧向注入和直接混合2种增容方式对PP/PP-g-MAH/PA 6共混体系形态与性能的影响.结果表明:加入PP-g-MAH可以同时提高PP/PA 6共混体系的刚性和韧性,侧向注入的增容效果尤为明显.侧向注入PP-g-MAH (5 phr) 的复合体系拉伸强度较纯PP提高了23.6%;侧向注入PP-g-MAH (20 phr)的复合体系拉伸断裂应变大于1 000%;PP-g-MAH能有效改善PP/PA 6体系的相容性,提高两相界面结合力,降低分散相粒子尺寸,且侧向注入比直接混合的效果更显著.  相似文献   

14.
以BPO为引发剂,通过悬浮固相接枝法,得到PP-g-(MAH/VAc)和PP-g-(MA/AA)接枝物,通过称重法和非水滴定法测得了接枝物的接枝率。红外光谱表明,单体都能接枝到PP上。SEM结果表明PP/PA6/PP接枝物共混体系中,PP-g-(MAH/VAc)的增容效果优于PP-g-(MA/AA),这主要是因为PP-g(MAH/VAc)在PP/PA6体系中起到反应性增容的作用,而PP-g-(MA/AA)仅起到物理缠结的作用。  相似文献   

15.
Phase morphology and rheological behavior of polyamide 6 (PA6)/acrylonitrile butadiene styrene (ABS) polymers blends was studied using scanning electron microscopy and rheometry. The results showed that the phase morphology and rheological properties depends on blend composition. We evaluated the effect of addition of ABS as dispersed phase and EnBACO‐MAH (ethylene n‐butyl acrylate carbon monoxide maleic anhydride) as a compatibilizer on the morphological and rheological behaviors of PA6/ABS blends. It was concluded that there is a good agreement between the results obtained from rheological and morphological studies. As a consequence, addition of the ABS and compatibilizer weight percent led to a significant change in morphological structure and a great mounting in the viscosity as well as the elasticity. The rheological properties results demonstrate that adding compatibilizer to polymer blends led to increasing the crossover point, which shows a transition from a high viscous to a considerably more elastic behavior. Also, the slow transition of relaxation time peak from the peak of the PA6 to the peak of the ABS implies increasing the miscibility of the PA6/ABS blend components by increasing compatibilizer content. In addition, the Carreau–Yasuda model was used to extract information on rheological properties (zero shear viscosity and relaxation time) for PA6/ABS/EnBACO‐MAH blends by fitting the experimental data with this model. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

16.
Cellulose nanocrystals (CNCs) have been studied as compatibilizers for improving the interfacial miscibility of polymer binary blends. Binary blends of water-soluble polymers–poly(vinyl alcohol), poly(ethylene oxide), and polyvinylpyrrolidone—containing different amounts of CNC (16 and 25 wt %) were prepared by a solution casting method. For the first time, a systematic side-by-side comparison between the morphological, thermal, and mechanical properties of the polymer blends reinforced by CNC has been conducted. It has been determined that in the presence of CNC, the degree of crystallinity of the blend components decreased and the miscibility of the blends increased. The blends possess enhanced thermal and mechanical properties as a result of improved miscibility of the blend components. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 137, 48662.  相似文献   

17.
Several home made and commercially available polyethylene (PE) samples grafted with maleic anhydride (MA) (PE-g-MA) were used as compatibilizer precursors (CPs) for the reactive blending of low density PE (LDPE) with polyamide-6 (PA). Scope of the work was to compare the effectiveness of these CPs with that of a number of ethylene-acrylic acid copolymers (EAA), which had been employed in a previous study for the reactive compatibilization of the same blends, and to get a deeper insight into the coupling reactions producing the PA-g-CP copolymers that are thought to act as the true compatibilizers in these systems. To this end, binary CP/LDPE and CP/PA and ternary LDPE/PA/CP blends were prepared with a Brabender mixer and were characterized by DSC, SEM and solvent fractionation. The results show that the PE-g-MA copolymers react more rapidly with PA than the EAA copolymers and that their CP effectiveness depends critically on the microstructure and the molar mass of their PE backbones. In particular, the CPs produced by functionalization of LDPE were shown to be miscible with this blend component and to be scarcely available at the interface where reaction with PA is expected to occur. Conversely, the CPs prepared from the HDPE grades were immiscible with LDPE and showed better CP performance. Whereas the effectiveness of the EAA copolymers studied earlier had been shown to increase with an increase in the concentration of the carboxyl groups, the concentration of the succinic anhydride groups of the PE-g-MA CPs studied in this work was found to play a minor role, at least in the investigated range (0.3-3.0 wt% MA).  相似文献   

18.
《Polymer》2007,48(1):356-362
The 20/80 blends of polyamide 6 (PA6) and acrylonitrile–butadiene–styrene copolymer (ABS) in the presence of styrene–maleic anhydride copolymer (SMA) and multiwall carbon nanotubes (MWNT) were prepared using melt-mixing technique. Crystallization behavior of the PA6 phase in the blends was studied using DSC, WAXD and SAXS techniques. Blends' morphology was characterized by SEM. We observed fractionated crystallization of PA6 phase in 20/80 PA6/ABS blends. It was also observed that the phenomenon of fractionated crystallization was influenced by the presence of both SMA and MWNT. Blends' morphology revealed the presence of wide domain size distribution of PA6 droplets in the amorphous ABS matrix. On incorporation of either SMA or SMA modified MWNT, the average domain size of PA6 droplets was found to be finer up to 1 wt% SMA modified MWNT. Encapsulation of SMA copolymer layer on the MWNT surface was also evident from SEM micrographs. SAXS analysis revealed the formation of multiple lamellae stacking of PA6 phase in the presence or absence of SMA and MWNT in 20/80 PA6/ABS blends. This was attributed to the formation of less perfect crystallites formed during the cooling of melt at higher degree of supercooling.  相似文献   

19.
Fractionated crystallization behavior of dispersed PA6 phase in PP/PA6 blends compatibilized with PP‐g‐MAH was investigated by scanning electron microscopy (SEM), differential scanning calorimeter (DSC), polarized light microscopy (PLM), and wide‐angle X‐ray diffraction (WAXD) in this work. The lack of usual active heterogeneities in the dispersed droplet was the key factor for the fractionated crystallization of PA6. The crystals formed with less efficient nuclei might contain more defects in the crystal structures than those crystallized with the usual active nuclei. The lower the crystallization temperature, the lesser the perfection of the crystals and the lower crystallinity would be. The fractionated crystallization of PP droplets encapsulated by PA6 domains was also observed. The effect of existing PP‐g‐MAH‐g‐PA6 copolymer located at the interface on the fractionated crystallization could not be detected in this work. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 91: 3742–3755, 2004  相似文献   

20.
The effects of multiple injection molding cycles on the chemical and mechanical properties of PA6/ABS and PA6/PA66/ABS blends are investigated. The chemical structures of both PA6/ABS binary and PA6/PA66/ABS ternary blends do not alter after recycling process. For PA6/ABS binary blend, it is found that the tensile strength, strain at break, elastic modulus, impact strength, flexural strength, and modulus of recycled blend decrease by 6.49%, 15.19%, 21.00%, 9.41%, 7.09%, and 8.25%, respectively, while MFI increases by 23.59% as compared with the virgin blend. After five recycling process for PA6/PA66/ABS ternary blend, the tensile strength, strain at break, and impact strength of recycled blend decrease by 18.00%, 50.80%, and 87.27%, respectively. However, flexural strength and modulus of PA6/PA66/ABS blend increase slightly. For virgin PA6/PA66/ABS blend, MFI value was 7.7 g/10 min and with recycling this value showed an important increase to 31.56 g/10 min after five cycles. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40810.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号