首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Uniaxial tension tests to the yield point were performed on poly(chlorotrifluoroethylene) (PCTFE) and poly(vinylidene fluoride) (PVF2) from room temperature to near the melting point at a strain rate of 2 min?1. At room temperature and at least two elevated temperatures, measurements were also made at strain rates from 0.02 to 8 min?1. The properties of these polymers were found to be similar to those of other semicrystalline polymers. In the absence of other transitions, yield energy was found to be a linear function of temperature extrapolating to zero near the melting temperature. The ratio of thermal to mechanical energy to produce yielding is smaller than for glassy polymers. Yield stress is a linear function of log strain rate. The ratio of yield stress to (initial) Young's modulus is about 0.03 at room temperature for both polymers. Yield stress is a linear function of unstrained volume. Yield strain, elastic, and plastic strain all initially increase with temperature, but PCTFE shows a decrease with temperature starting at about 100°C, thus behaving like a glassy amorphous polymer in this region.  相似文献   

2.
Untaxial tension tests to the yield point were performed on polypropylene as a function of temperature from 22 to 143°C at a strain rate of 2 min?1. At 22, 42, and 71°C, measurements were also made at strain rates from 0.02 to 8 min?1. Yield energy was found to be a linear function of temperature extrapolating to zero at the melting point (164°C). The ratio of thermal to mechanical energy to produce yielding is about three times smaller than for glassy polymers. The ratio of yield stress to (initial) Young's modulus is about 0.024 at room temperature and increases to 0.043 at 143°C. Yield stress is a linear function of unstrained volume.  相似文献   

3.
Uniaxial tension tests to the yield point were performed on polyethylene as a function of temperature from 21 to 117°C at a strain rate of 2 min?1. At 21, 45, and 69°C, measurements were also made at strain rates from 0.02 to 8 min?1. Yield energy was found to be a linear function of temperature extrapolating to zero at the melting point (140°C). The ratio of thermal to mechanical energy to produce yielding is about three times smaller than for glassy amorphous polymers. The ratio of yield stress to (initial) Young's modulus is 0.021 at room temperature and increases to 0.059 at 117°C. Also this ratio was found to decrease with log strain rate. For instance, at 21°C for a strain rate of 0.02 min?1 the value was 0.023, while at 8 min?1 this value decreased to 0.020.  相似文献   

4.
Uniaxial tension tests to the yield point were performed on a crystalline polymer, poly(4-methyl pentene-1) (PMP) as a function of temperature from 21° to 200°C at a strain rate of 2 min?1. After testing, the specimens showed considerable stress whitening as a result of microvoid formation. Yield energy was found to be a linear function of temperature extrapolating to zero at the melting point (240°C). Thus, the behavior of this crystalline polymer is similar to that of glassy polymers, but with the melting temperature, rather than the glass transition temperature, as the reference point. The ratio of thermal to mechanical energy input to produce yielding is an order of magnitude smaller for PMP than it is for glassy polymers. The ratio of yield stress to Young's modulus is about 0.02, which is typical for polymers. Yield stress is a linear function of log strain rate, which implies that yielding can be described as a segmental flow rate process in which the applied stress biases the activation energy. The activation volume is on the order of 20 monomer unit volumes and increases as the temperature increases. The activation energy is 19 kcal/mol.  相似文献   

5.
Uniaxial tension tests to, the yield point were performed on poly(hexamethylene adipamide) (nylon 6,6) as a function of temperature from 21 to 200°C at a strain rate of 2 min?1. At 21 and 60°C, measurements were also made at strain rates from 0.02 to 8 min?1. Using simple rate theory, reasonable values of activation volume were obtained, but the simple theory is inadequate to determine the activation energy. The yield-strain temperature dependence changes at 160°C as a result of a reversible crystal-crystal transition. Because of this behavior of the yield strain, the yield energy is not a linear function of temperature, as observed for several other polymers.  相似文献   

6.
Tensile and compressive properties of polystyrene bead (PSB) foams at room temperature for strain rates from 10?3 to 105 min?1 can be represented as nearly linearly increasing functions of modulus or stress versus the logarithm of the strain rate. The shear modulus and tensile data, including failure properties, on 0.054 g/cc PSB foam at various temperatures and strain rates can be represented by master curves of log (stress or modulus) versus log (reduced strain rate). These master curves are formed by a time and temperature superposition method, wherein data at one temperature are superposed on data at another temperature by a shift along the log (strain rate) axis. These time–temperature shift factors are calculated using a form of the Arrhenius equation.  相似文献   

7.
Partially oriented polyesters yarns (POY) were strained at different strain rates (0.03–12.00 min?1) and temperatures above and below Tg (3–92°C). Thermal retraction, density, DSC, and WAXS techniques show that strain-induced crystallization takes place by straining at temperatures above as well as below Tg. Above Tg, depending upon the strain rate, two regimes are observed: Below the strain rate of 1.5 min?1, the flow regime; the degree of crystallinity is reduced as the strain rate increases. Above the strain rate of 1.5 min?1, the strain-induced crystallization regime; the degree of crystallinity increases as the strain rate increases. Thermal retraction, stress–relaxation, and sonic modulus techniques indicate that, upon cold straining, instead of the original Tg at 65–69°C, two glass transitions occur: an upper Tg (u) and a lower Tg (l). For POY strained at 3°C and at a strain rate of 10 min?1, the values are 78°C and 37°C, respectively. The higher the strain rate and the lower the straining temperature, the large the difference between Tg (u) and Tg (l).  相似文献   

8.
F.F. Rawson  J.G. Rider 《Polymer》1974,15(2):107-110
The variations of tensile and compressive yield stresses and of Young's modulus of oriented poly(vinyl chloride) sheet with direction and with degree of orientation, represented by birefringence, are shown. Young's modulus was calculated from elastic stiffness constants measured by an ultrasonic pulse method at 5MHz with estimated strain and strain rate amplitudes of 2 × 10?5 and 100s?1. Yield strains were about 5 × 10?2 measured at strain rates of about 2 × 10?2s?1. Although the measuring conditions were so different there was found to be a close correlation between tensile yield stress and Young's modulus, the two quantities being connected by a simple linear relationship, as direction of measurement and degree of orientation were varied. Compressive yield stress did not correlate with Young's modulus, and changed little with direction or degree of orientation by comparison with tensile yield stress. The empirical linear relationship between tensile yield stress and Young's modulus, difficult to account for theoretically, might form the basis of a method for determining tensile yield stress ultrasonically.  相似文献   

9.
The stress–strain properties of poly(2,6-dimethyl-1,4-phenylene oxide)/polystyrene composites containing crosslinked polystyrene microspheres have been measured at strain rates of 0.167, 1.67, and 16.7 min?1. It is found that Young's modulus almost has no increase with the filler content. The elongation at break and tensile strength decrease with the volume fraction of the filler, but both tend to flatten out at the volume fraction νf > 0.25 at the strain rate of 1.67 min?1. The two ultimate tensile properties also have maximum values in the relationship with strain rate at the same filler concentration and strain rate conditions. Considering that elongation can be brought about by both matrix and filler, the well-known equation of elongation at break becomes  相似文献   

10.
The compressive stress-strain behavior of a commercial polystyrene has been studied and the effect of deformation temperature on modulus, yield stress, percent yield strain and yield energy was determined. Yield energy is the only one of these parameters that is linear with temperature in the ductile region. A change in the mode of failure from ductile to brittle occurs between 5–30°C at a strain rate of O.1/in./in./min. At all temperatures studied, the yield or fracture stress varied linearly with the rate of deformation for strain rates ranging from 0.1 to 1.0 in./in./min. The yield data as a function of temperature were analyzed via a rate expression modified to incorporate the Coulomb-Navier yield criterion, Activation energy was found to be a function of deformation temperature with a change in slope occurring near the β transition. Activation volume increased linearly with deformation temperature, for the range studied. Agreement of dynamic mechanical and yield activation energies imply that the type of motion and the height of the energy barrier are similar for both. However, an increase in activation volume for stressed vs unstressed conditions suggests that a greater number of chain segments move as a result of stress biasing. Also the increase of both activation volume and activation energy with temperature implies that the correlated length of chain movement increases as temperature is increased. Similar to activation energy, yield stress exhibits a change in temperature dependence near the β transition. Data on other glassy polymers suggest that the highest temperature sub-Tg, transition is related to the change in the temperature dependence of yield stress.  相似文献   

11.
Low, intermediate, and high strain rate compression testing (1.7 × 10?4 to 2500 s?1) of the hydroxyl‐terminated polybutadiene (HTPB) propellant at room temperature, were performed using a universal testing machine, a hydraulic testing machine, and a split Hopkinson pressure bar (SHPB), respectively. Results show that the stress linearly increases with strain at each condition; the increasing trend of stress at a given strain with the logarithm of strain rate changes from a linear to an exponential form at 1 s?1. By combining these characteristics, we propose a rate‐dependent constitutive model which is a linearly elastic component as a base model, then multiplied by a rate‐dependent component. Comparison of model with experimental data shows that it can characterize the compressive mechanical properties of HTPB propellant at strain rates from 1.7 × 10?4 to 2500 s?1. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43512.  相似文献   

12.
Rheology and shaping of concentrated cermet suspensions consisting of nickel (Ni) and yttria‐stabilized zirconia (YSZ) nanoparticles in water have been examined over a broad range of volumetric solids concentration (? = 0.1–0.4) and Ni fraction (fNi = 0.15–0.45). Preferential adsorption of pyrogallol‐poly(ethylene glycol) polymer (i.e., Gallol‐PEG) on surface of the Ni and YSZ particles imparts steric hindrance between the suspending particles so that fluidity can be obtained under shear stress. The cermet suspensions exhibit shear‐thinning flow behavior under steady‐shear measurement over shear rates of 100–103 s?1. Yield stress and yield strain of the suspensions appear to vary pronouncedly with ? and fNi under oscillatory shear over a shear‐strain range of 10?1–103%. With the Gallol‐PEG adsorption, an apparent viscosity less than 6 × 10?1 Pa.s at a shear rate of 102 s?1 has been obtained for the highly concentrated composite suspension with ? of 0.40 and fNi of 0.25. A high solids concentration effectively prohibits phase segregation during wet‐shaping processes. Uniform green compacts have been obtained from slip casting of the concentrated cermet mixture (? = 0.30) without use of binder and are then fired at 1200°C under reducing atmosphere to form porous Ni/YSZ compacts. Relative sintered density increases from 65% to 75% of the theoretical value when fNi was increased from 0.15 to 0.45, due mainly to the lower sintering temperature required for the Ni phase.  相似文献   

13.
J.L. Willett  F.C. Felker 《Polymer》2005,46(9):3035-3042
Composite materials were prepared with granular corn starch (CS) or potato starch (PS) and poly(ester amide) resin (PEA), with starch volume fractions (?) up to 0.40. Tensile yield properties were evaluated at strain rates of 0.0017-0.05 s−1. Yield stress of the CS-PEA materials increased with strain rate and starch content. The strain rate effect became more pronounced as the starch content increased. A crossover effect was observed with PS-PEA materials: at low strain rates, the yield stress decreased with increasing ?, and increased with ? at higher strain rates. This crossover suggests that the time scale of debonding in the PS-PEA materials is comparable to the time scale of the tension test. The addition of either CS or PS to PEA induced a distinct maximum in the stress-strain curve at yield compared to the neat PEA. Debonding of starch granules from the PEA matrix occurred at lower stresses in the PS-PEA materials than the CS-PEA. In PS-PEA, debonding occurred in bands similar in appearance to shear bands throughout the tensile specimen. After yielding, the cross-section area decreased as the debonded zones coalesced. In the CS-PEA materials, debonding zones were more diffuse, and a distinct neck formed at yield. Yield stress data for the CS-PEA materials could be shifted with respect to strain rate to construct a master curve, indicating that yield properties at these strain rates were determined by the matrix response rather than debonding as observed in other starch-filled materials.  相似文献   

14.
BACKGROUND: Ex situ bioremediation is a feasible and economical way to remove petroleum pollutants from contaminated soil or water. A baffled roller bioreactor was shown to be effective for biodegradation of diesel oil as a model petroleum pollutant. Microorganisms enriched from an industrially contaminated soil with heavy hydrocarbons were shown to be the best inoculum source for diesel biodegradation. RESULTS: The baffled roller bioreactor demonstrated better performance than control (roller bioreactor without baffles) or bead mill roller (control bioreactor filled partially with spherical beads) bioreactors. Biodegradation consisted of both fast and slow stages for degradation of light and heavy compounds, respectively. Among the tested temperatures ranging from 15 to 35 °C, room temperature (23 °C) was found to be the optimum temperature for biodegradation. The values of maximum specific growth rate and substrate yield (µmax and YXS) for the indigenous microorganisms in the baffled roller bioreactor at room temperature were found to be 0.72 ± 0.08 h?1 and (7.0 ± 1.0) × 107 cells mg?1 diesel, respectively. Biodegradation of diesel concentrations up to 200 g L?1 was achieved with the highest biodegradation rate of 266 mg L?1 h?1 at the highest rotation rate of 45 rpm in the baffled roller bioreactor. CONCLUSION: Using indigenous bacteria enriched from industrial contaminated soil at room temperature, a baffled roller bioreactor is able to biodegrade high diesel oil concentrations at high biodegradation rates. Copyright © 2008 Society of Chemical Industry  相似文献   

15.
Tensile mechanical properties of poly(aryl ether ether ketone) (PEEK) films showing different thermal histories have been investigated at room temperature to point out the main key microstructural features governing properties over a wide strain rate range, i.e., from 10−5 to 300 s−1. The strain rate sensitivity of the mechanical properties of amorphous PEEK films significantly depends on the analyzed strain rate range: i.e., 1) from 10−5 to 10 s−1, the strain rate dependence of both apparent Young's modulus and yield stress is weak; and 2) from 10−1 to 200 s−1, both parameters significantly increase. Thus, based on the definition of the relationships between temperature, strain rate, and frequency respectively used for tensile tests and dynamic mechanical spectrometry, it was shown that the mechanical behavior of PEEK films at room temperature could be governed by similar molecular mechanisms as those giving rise to the β1 and β2 transitions. The Eyring analysis shows that motions of five or six monomers are implied at the beginning of the plastic deformation of amorphous and semi-crystalline PEEK films, while at higher strain rates, shorter chain segments are concerned. Thus, the crystalline phase only induces an increase in the stress level because of the reinforcement effect but does not modify the molecular mechanisms governing the plastic deformation of PEEK films at room temperature. © 1997 John Wiley & Sons, Inc. J Appl Polym Sci 64: 1053–1059, 1997  相似文献   

16.
The phenomenology of yield in bisphenol-A polycarbonate is explored through tensile tests on thin rectangular specimens and through pressure-induced bulging of thin, clamped circular disks. In a tensile test, while the nominal critical stress at which yield initiates and the nominal draw stress at which a stable neck propagates along a specimen depend on the temperature and the strain rate, the ratio of the draw stress to the critical stress is shown to be approximately 0.75 over a temperature range of 22 to 65°C and strain-rates in the range of 10?4 to 100 s?1. Specimens subjected to constant tensile loads between the draw and critical stresses are shown first to creep till stretches on the order of 1.06 are attained and then are shown to undergo stable necking. Tensile tests on thin, wide rectangular specimens show that yielding initiates through shear bands that broaden and intersect to generate necks, which subsequently propagate along the specimen. In pressure-induced bulging of clamped disks, biaxial stretching progresses monotonically under increasing pressures; strain localization does occur near the outer edges of the specimens, however. Heating of a specimen with a substantial stably necked region shows that the temperature-induced recovery of the specimen from its deformed state begins well below the transition temperature Tg of the material, although most of the recovery occurs at Tg.  相似文献   

17.
Tensile tests were made on polypropylene films as a function of aging temperature from 80 to 130°C at a strain rate of 5 cm min-1. Polypropylene films aged at 60 and 100°C and at time intervals up to 180 min were also stretched at the same strain rate. The yield stress and initial modulus were found to be linear functions of temperature, extrapolating to a zero value close to the thermodynamic melting point of the polymer (170°C). The work of yield, the plastic and yield strains also decreased with increase in aging temperature but the elastic strain increased. The plastic strain, yield strain, yield stress, and initial modulus for the 60°C aged film had larger values than the corresponding values for the 100°C aged film at equivalent time intervals and all properties decreased with increasing log time of aging. These decreases in properties were explained in terms of decrease in the density (crystallinity) of aged PP films. © 1997 John Wiley & Sons, Inc. J Appl Polym Sci 65: 625–633, 1997  相似文献   

18.
The computer aided design approach used in current applications of semicrystalline polyoxymethylene (POM) requires high strain-rate mechanical data. The primary aim of this work has been to measure the room temperature modulus and tensile strength of injection molded samples of POM of different molecular weights at cross-head speeds of between 10?5 ms?1. We observe no major transition in bulk mechanical behavior in this range of test speeds, the Young's modulus E, in particular, showing little strain rate dependence. This is rationalized on the basis of tensile tests over a range of temperatures, these indicating room temperature to correspond to the plateau in the E(T) curves (Tg for these materials is taken to be ?70°C, and the DSC melting onset occurs at ~ 170°C). The tensile strength increases as ~log(d?/dt) and the behavior is found to be highly nonlinear, strains to fail of the order of 1 being observed even at the highest strain rates, depending on the molecular weight. It is believed that the yield stress of th crystalline regions determines the tensile strength above Tg, the higher degree of crystallinity associated with lower molecular weights resulting in a slightly higher tensile strength. Nevertheless, failure is qualitatively brittle, with no necking and relatively little permanent deformation. This behavior is discussed in terms of morphological investigations of the fractured samples by optical and scanning electron microscopy (SEM). In attempting to relate ultimate failure to the molecular/crystalline structure of the samples, measurements of the critical stress intensity for crack initiation in mode I opening, KIC, as a function of crystallization temperature Tc have been carried out using compact tension specimens machined from injection molded and compression molded plaques. KIC increases with molecular weight and decreases with Tc at low test speeds (in spite of an increase in crystallinity with Tc). This is accounted for in terms of a crack shielding model for crack initiation and of molecular rearrangements occurring during crystallization which lead to a decrease in the effective entanglement density with Tc. The implications of this model are then compared with KIC results over a range of cross-head speeds and temperatures.  相似文献   

19.
The catalysts such as Al2O3/ZrO2 with 2–10?wt% of Al2O3 were coated on honeycomb monoliths by dip-and-dry technique. These catalysts were also prepared in their powder form. All the catalysts (honeycomb and powder form) were characterized for their surface acidity, crystallinity, functionality, elemental analysis, and morphology. The catalytic activity of all the catalysts was performed in the transesterification of methyl salicylate with benzyl alcohol to synthesize benzyl salicylate. Reaction conditions like reaction time, reaction temperature, and the molar ratio of the reactants were varied to obtain the highest yield of benzyl salicylate. The 6% Al2O3/ZrO2 coated on honeycomb exhibited the highest conversion of methyl salicylate at 383?K in 60?min. Kinetic studies were conducted to determine the energy of activation and temperature coefficient. The rate constants in the case of 6AZ (HCM) was found to be 5.0?×?10?3?min?1 (373?K); 6.4?×?10?3?min?1 (383?K) and 2.2?×?10?3?min?1 (373?K); 3.2?×?10?3?min?1 (383?K) in the case of 6AZ (PF) catalyst, while the energy of activation (Ea) values were found to be 35.12 and 39.93 kJ mol?1 for 6AZ (HCM) and 6AZ (PF), respectively. The reactant preadsorption study discloses that the transesterification follows the Eley–Rideal mechanism. Reactivation and recyclability of the catalysts were also examined and the results clearly indicate that Al2O3/ZrO2 coated on the honeycomb is efficient and green catalytic system.  相似文献   

20.
Although the biosynthesis of the antibiotic gramicidin S (GS) by Bacillus brevis ATCC 9999 has been studied extensively, almost no attention has been given to environmental control of its fermentation process. In this respect, GS fermentations conducted in a 7.5 dm3 fermentor in complex (YP) medium revealed that a high aeration rate resulted in a high biomass yield (12 g DCW dm?3) with very low GS levels (170 mg GS dm?3). Lowering the aeration rate (5 dm3 air min?1 at 300 rev min?1) caused a dramatic increase in GS formation (2100 mg GS dm?3) and comparable but slower biomass formation. In chemically-defined (F3/6) medium fermentations, an aeration rate of 5 dm3 air min?1 at 300 rev min?1 was apparently too high as only 0.104 mg GS mg?1 DCW was produced. A much lower aeration rate (2 dm3 air min?1 at 250 rev min?1) was needed to arrive at a higher specific antibiotic level: 0.130 mg GS mg?1 DCW. These data seem compatible with the finding that oxygen is known to inactivate the GS-synthetases. Furthermore, keeping the pH constant at 7.3 under low aeration conditions increased specific GS production up to 0.220 mg GS mg?1 DCW in YP, as well as in F3/6 fermentations. Both environmental pH and dissolved oxygen tension clearly affect growth pattern, growth extent and GS production in these high yielding media. These data stress the importance of controlling pH and aeration rate during GS fermentations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号