首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper concerns the effects of processing parameters on the in situ compatibilization of polypropylene (PP) and poly(butylene terephthalate) (PBT) blends by one-step reactive extrusion in a corotating intermeshing twin screw extruder. This in situ compatibilization process was characterized by a sequential arrangement for the free radical grafting of glycidyl methacrylate (GMA) onto PP and the interfacial compatibilization reaction between the GMA functionalized PP and the terminal carboxylic group of the PBT. Among the processing parameters examined were feed rate (Q), screw speed (N), and specific throughput (Q/N). Their effects were evaluated by the associated mechanical properties of final blends in terms of elongation at break and impact strength. Results showed that elongation at break and impact strength increased virtually linearly with decreasing Q or N. Moreover, for a particular Q/N, they increased with decreasing Q with a concomitant decrease in N. Further analysis of these results showed that it is through residence time that these parameters affect the performance of the above mentioned in situ compatibilization process. © 1996 John Wiley & Sons, Inc.  相似文献   

2.
The effect of reactive compatibilization on the mechanical properties of nanosilica filled polypropylene (PP) composites was studied in this work. First, the nanoparticles were grafted with poly(glycidyl methacrylate) (PGMA) by solution free‐radical polymerization, and then melt blended together with PP matrix and aminated PP (PP‐g‐NH2) that acts as reactive compatibilizer. The reaction between epoxide groups of the grafted PGMA on the nanoparticles and amine groups of PP‐g‐NH2 during compounding greatly improved interfacial interaction in the composites. As a result, tensile strength, Young's modulus, and notch impact strength of PP composites were increased at rather low filler content. The experimental results indicated that the reinforcing and toughening effects were controlled by flexibility of the grafted polymer as well as processing methods. POLYM. ENG. SCI., 47:499–509, 2007. © 2007 Society of Plastics Engineers.  相似文献   

3.
Polypropylene‐graft‐cardanol (CAPP) was prepared by reactive extrusion with polypropylene (PP) and natural renewable cardanol, which improved the inherent defects of PP such as its chemical inertness and hydrophobicity. Moreover, the cardanol grafted onto PP resolved the degradation of PP during reactive extrusion and use. The effects of reactive extrusion on the change of the molecular structure of PP, the change in the free‐radical concentration during processing, and the compatibilization of CAPP on the PP/polystyrene (PS) composite materials were examined in this study. The constants of the grafting reaction rate at the beginning of reactive extrusion were also deduced. The results show that cardanol was grafted onto PP, and the p–π conjugate system in cardanol was observed to stabilize free radicals. The grafting reaction rate (Rg) at the initial stage of the grafting reaction process was calculated through the equation Rg = kg[M·][Cardanol], where kg is the constant of the apparent grafting reaction rate and [M·] is the concentration of free radicals in the reaction system. kg first increased with the growth of temperature and then began to decrease when the temperature exceeded the critical temperature of 200°C. The mechanical properties showed almost no change after the samples were aged for 72 h. This was due to CAPP, which changed PP/PS to a ductile material from a brittle one. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 39911.  相似文献   

4.
Polypropylene (PP) and poly(styrene‐b‐butadiene‐b‐styrene) block copolymer (SBS) were melt‐blended in the presence of initiator system. Dicumyl peroxide (DCP)/Triallyl isocyanurate (TAIC) via self‐deigned VE, aiming at in situ reactive compatibilization of toughed PP/SBS blend. The reactivity, morphology and mechanical properties of PP/SBS/DCP/TAIC blends were studied. Online torque detection was conducted to monitor changes in viscosities of reactive compatibilized blends, which could give proof of the interfacial grafted reaction induced by DCP/TAIC system. The effect of reactive compatibilization on the dispersed particles sizes and interfacial adhesion was studied by scanning electron microscopy. Analysis on mechanical performance revealed the impact strength improved after treated by initiator system, moreover, the impact‐fractured surface observation showed, the failure mode changed from debonding mechanism of neat 50PP/50SBS blend to plastic deformation mechanism of blend containing 3.0 phr initiator system. With improved interfacial adhesion, compatibilized blends not only were toughened but also exhibited enhanced tensile strength and thermal stability. Dynamic mechanical analysis showed a reduction of between PP phase and the PB segments in SBS phase, indicating reactive compatibilization of the blend was achieved. In the final part, a brief discussion was given about the dominant effects from chain scission of PP matrix to intergrafting reactions of PP and SBS, under different content of DCP/TAIC initiator system. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41543.  相似文献   

5.
This paper concerns the morphology development of in situ compatibilized semicrystalline polymer blends in a co-rotating, intermeshing twin-screw extruder, using polypropylene (PP) and polyamide 6 (PA-6) blends as model systems. The morphology of in situ compatibilized blends develops much faster that of mechanical ones. The size of the dispersed phase (PA-6) undergoes a 104 fold reduction from a few millimeters to sub-micron during its phase transition from solid pellets to a viscoelastic fluid. The final morphology is reached as soon as the phase transition is completed, which usually requires only a small fraction of the screw length in a co-rotating twin screw extruder. Screw profiles and processing conditions (screw speed, throughput and barrel temperature) control the PA-6's melting location and/or rate, but do not have significant impact on the ultimate morphology and mechanical properties of in situ compatibilized blends. The finding that morphology of PP/PA-6 reactive blend develops rapidly makes it possible to produce compatibilized PP/PA-6 blends by the so-called one-step reactive extrusion. It integrates the traditionally separated free radical grafting of maleic anhydride onto PP and the compatibilization of PP/PA-6 into a single extrusion step.  相似文献   

6.
The mechanical and rheological properties of polypropylene (PP), polyamide 6 (PA6), and their blends treated by high‐intensity ultrasound during extrusion were investigated. A lower head pressure was achieved in the extrusion of these thermoplastics. The mechanochemical and sonochemical effects of ultrasound led to simultaneous ionic condensation reactions and degradation in a homogeneous melt of PA6, with a prevailing effect of enhanced polycondensation reactions. The observed improvements in the mechanical properties of ultrasonically treated PA6 were attributed to condensation reactions, which yield a higher molecular weight, a higher crystallinity, and a more uniform crystal size distribution. At high ultrasound amplitudes, for PP, the degradation of polymer chains was observed with little deterioration of the mechanical properties. For ultrasonically treated PP/PA6 blends, a competition between the degradation and partial in situ compatibilization effect was found. At certain blend ratios, the tensile toughness and impact strength of the treated blends were almost double those of the untreated blends. However, full compatibilization was not achieved, possibly because of the low coupling selectivity of highly reactive radicals. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 2643–2653, 2006  相似文献   

7.
Attempts were made to study the effect of reactive compatibilization via Friedel–Crafts alkylation reaction, using AlCl3 as a catalyst, on rheology, morphology, and mechanical properties of polypropylene/polystyrene ( PP/PS) blends in the presence of an organoclay (Cloisite 15A). During the reactive compatibilization process, PS showed much more degradation than that of PP in the presence of AlCl3. It was found that the effect of generation of PP‐g‐PS copolymer at the interface of the PP/PS blend dominates the effects of degradation of PS and PP phases, which manifested itself by increased toughness as well as uniform dispersion of the dispersed PS particles in the PP matrix. Generation of PP‐g‐PS copolymer was confirmed by using Fourier‐transform infrared analysis. By using rheological and X‐ray diffraction analyses, it was shown that the clay had higher affinity to PS than that of PP. It was also shown that the clay located at the interface of PP and PS phases, leading to increased relaxation time of the deformed PS dispersed particles, exhibited higher dispersion in PP/PS blend, which resulted in higher ductility of the blend. By using the results of rheological studies, it was concluded that during reactive compatibilization of the blend nanocomposite, the clay migrated into the dispersed PS phase, which was confirmed by scanning electron microscopy analysis. It was demonstrated that the rheological studies have a reliable sensitivity to the clay partitioning and phase morphology of the studied blends and blend nanocomposites . J. VINYL ADDIT. TECHNOL., 24:18–26, 2018. © 2015 Society of Plastics Engineers  相似文献   

8.
Polypropylene (PP) and polystyrene (PS) are immiscible and incompatible. Since both PP and PS components possess no reactive functional group, reactive compatibilization of a PP/PS blend is impossible unless certain reactive functional groups are imparted to either PP or PS. In this study we provide a simple approach to reactively compatibilize the nonreactive PP/PS blend system by physically functionalizing PP and PS with the addition of maleic anhydride grafted PP (PP‐g‐MA) and styrene maleic anhydride random copolymer (SMA), respectively. An epoxy monomer, serving as a coupler and possessing four epoxy groups able to react with the maleic anhydride of PP‐g‐MA and SMA, was then added during melt blending. Observations of the finer PS domain sizes and improved mechanical properties support the plausibility of reactive compatibilization of this nonreactive PP/PS blend by combining physically functionalized PP and PS with tetra‐glycidyl ether of diphenyl diamino methane (TGDDM) in a one‐step extrusion process. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2008  相似文献   

9.
The compatibilization of polypropylene/acrylonitrile–styrene (PP/AS) blends through the addition of peroxide (DCP) was investigated in this study. The grafting reaction between PP and AS with the addition of peroxide occurred during the reactive‐blending process. The in situ‐formed grafting copolymers of PP‐g‐AS and AS‐g‐PP were then characterized by FTIR. The optimum concentration of the initiator, DCP, was 0.2 wt %, and the reaction temperature should be above 195°C. It was found that, when AS was the major component of the blends, the grafting of AS onto PP was the main process; conversely, when PP was the major component, PP was grafted onto AS. These results can be explained by the main‐chain scission of PP during the reactive‐blending process. With increase of the AS component, the total degree of grafting increased at first and then decreased after the composition of the blends reached 50/50. The maximum degree of grafting was found to be 6 wt % for the 50/50 PP/AS/DCP blend. PP was more degradable than was AS in the presence of peroxide at high temperatures. The MFR values of the PP/AS/DCP blends were slightly greater than were those of the simple PP/AS blends, which means that blending is an effective way to protect PP from degradation. SEM micrographs of the cross section of PP/AS/DCP showed a fine dispersion and a smaller domain size of the dispersed‐phase particles, implying that the in situ‐formed grafting copolymers act as a compatibilizer to reduce the interfacial tension between the PP and AS phases. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 82: 1284–1290, 2001  相似文献   

10.
The main objective of this study was to show that an efficient removal of residual monomers is very important for in situ compatibilization of immiscible polymer blends by one step reactive extrusion. One-step reactive extrusion means that when compatibilizing two immiscible polymers with one polymer containing potential functional groups and the other being chemically inert with respect to these functional groups, functionalization of the chemically inert polymer and its subsequent interfacial reaction with the functional polymer are accomplished in a single extrusion process. Two model blend systems were chosen: polypropylene/poly(butylene terephthalate) (PP/PBT) and high density polyethylene/polyamide 6 (HDPE/PA6). A co-rotating intermeshing twin screw extruder was used to process these blends. Glycidyl methacrylate (GMA) and maleic anhydride (MA) were used to functionalize PP and HDPE, respectively. Results showed that the mechanical properties of both blends in terms of elongation at break and impact strength were improved to a much greater extent with up-stream devolatilization compared with down-stream devolatilization.  相似文献   

11.
Epoxidized natural rubber–alumina nanoparticle composites were prepared by melt compounding with an internal mixer for a constant filler loading of 10 phr. Mixer parameters such as the mixing temperature, mixing time, and rotor speed were screened and optimized with response surface methodology to maximize the impact strength. The parameters were selected as three independent variables and the impact strength (J/m) was selected as the response in a screening factor study. The mixing temperature and its interaction terms were identified as insignificant factors with a P value greater than 0.0500. The optimum calculated values of the tested variables (rotor speed and mixing time) for the maximum impact strength were found to be a rotor speed of 60 rpm and a mixing time of 6 min with a predicted impact strength of 208.88 J/m. These predicted optimum parameters were tested in real experiments. The final impact strength was found to be close to the predicted value of 215.84 J/m, with only a 3.33% deviation. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

12.
The compatibilization of polypropylene (PP)/nylon 6 (PA6) blends with a new PP solid‐phase graft copolymer (gPP) was systematically studied. gPP improved the compatibility of PP/PA6 blends efficiently. Because of the reaction between the reactive groups of gPP and the NH2 end groups of PA6, a PP‐g‐PA6 copolymer was formed as a compatibilizer in the vicinity of the interfaces during the melting extrusion of gPP and PA6. The tensile strength and impact strength of the compatibilized PP/PA6 blends obviously increased in comparison with those of the PP/PA6 mechanical blends, and the amount of gPP and the content of the third monomer during the preparation of gPP affected the mechanical properties of the compatibilized blends. Scanning electron microscopy and transmission electron microscopy indicated that the particle sizes of the dispersed phases of the compatibilized PP/PA6 blends became smaller and that the interfaces became more indistinct in comparison with the mechanical blends. The microcrystal size of PA6 and the crystallinity of the two components of the PP/PA6 blends decreased after compatibilization with gPP. The compatibilized PP/PA6 blends possessed higher pseudoplasticity, melt viscosity, and flow activation energy. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 420–427, 2004  相似文献   

13.
Blends of different types of polypropylenes (PP) with polyamide 6 (PA6) were produced by extrusion. The PPs used were a PP homopolymer, a maleic anhydride‐grafted homopolymer, and an acrylic acid‐grafted homopolymer. The blends were characterized by DSC measurements, selective extraction, infrared spectroscopy, REM microscopy, melt rheology, and their mechanical properties. Three types of interactions in the blends as well as in two‐component composites mold by the core‐back process could be identified. Blends of PP with PA6 were not compatible, and two‐component bars could not be produced. Blends of PPgAA and PA6 were made compatible during reactive extrusion. Two‐component bars could be produced only with a blend containing 50 wt % PA6. The composite formation was based on the interdiffusion of PA6 in both components and the reactive compatibilization in the blends. Blends of PPgMAn were also compatibilized during reactive extrusion. The composite formation on two‐component injection molding was based on two mechanisms: the interdiffusion at sites, where PA6 chains of both the components came into contact, and an interfacial reaction, where PPgMAn and PA6 came into contact. The interfacial reaction was supported by the high mobility of the first component at the temperature of the melt of the second component. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 2992–2999, 2006  相似文献   

14.
The paper consides the effects of compatibilization with maleic anhydride grafted polypropylene (PP-g-MAH) on the propertie of immiscible blends of polypropylene (PP) and nylon 6 (N6). We prepared the blends by three different mixing processes; single-step blending, two-step blending with reactive premixing, and two-step blending with nonreactive premixing, to determine the effective mixiing process for fine morphological structure thermal stability, and mechanical properties. Dynamic melt reheological properties were measured to examine the modification of elastic properties by the compatibilizer. In addtion, thermal analysis was also carried out to detect the change in crystallization and thereby to probe the degree of compatibilizaton. The results show that compatibilized blends prepared by teh single-step process exhibit improved phase morphology, thermal stability, and mechanical properties for dried conditions, compared with other blend types. Finally, the water absorption test indicates that the added compatibilizer yields enhanced water resistance in spite of the strong intrinsic hydrophilicity of N6. In particular, two-step blending with reactive premixing is most effective in improving water resistance and reducing degradation of mechanical properties after moisture absorption.  相似文献   

15.
Compatible polymer blends of polypropylene (PP) with an amorphous polyamide (aPA) were obtained through reactive compatibilization by adding 20% maleic anhydride‐modified copolymer (PP‐g‐MA) to the blends. The blends were made up of a pure PP phase and an aPA‐rich phase where very small amounts of PP were detected. The dispersed phase particle size decreased considerably indicating that compatibilization occurred. Young's modulus of the compatibilized blends increased with respect to that of the uncompatibilized ones. The compatibilized blends were highly ductile, and the impact strength also improved, proving that compatibilization occurred under a broad range of experimental conditions. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2013  相似文献   

16.
T.S. Omonov  C. Harrats  G. Groeninckx 《Polymer》2005,46(26):841-12336
Phase morphology development in ternary uncompatibilized and reactively compatibilized blends based on polyamide 6 (PA6), polypropylene (PP) and polystyrene (PS) has been investigated. Reactive compatibilization of the blends has been performed using two reactive precursors; maleic anhydride grafted polypropylene (PP-g-MA) and styrene maleic anhydride copolymer (SMA) for PA6/PP and PA6/PS pairs, respectively. For comparison purposes, uncompatibilized and reactively compatibilized PA6/PP and PA6/PS binary blends, were first investigated. All the blends were melt-blended using a co-rotating twin-screw extruder. The phase morphology investigated using scanning electron microscope (SEM) and selective solvent extraction tests revealed that PA6/PP/PS blends having a weight percent composition of 70/15/15 is constituted from polyamide 6 matrix in which are dispersed composite droplets of PP core encapsulated by PS phase. Whereas, a co-continuous three-phase morphology was formed in the blends having a composition of 40/30/30. This morphology has been significantly affected by the reactive compatibilization. In the compatibilized PA6/(PP/PP–MA)/(PS/SMA) blends, PA6 phase was no more continuous but gets finely dispersed in the PS continuous phase. The DSC measurements confirmed the dispersed character of the PA6 phase. Indeed, in the compatibilized PA6/(PP/PP–MA)/(PS/SMA) blends where the PA6 particle size was smaller than 1 μm, the bulk crystallization temperature of PA6 (188 °C) was completely suppressed and a new crystallization peak emerges at a lower temperature of 93 °C as a result of homogeneous nucleation of PA6.  相似文献   

17.
This paper discusses process development, tensile properties, morphology, oil resistance, gel content, and thermal properties of polypropylene (PP)/ethylene-propylene diene terpolymer (EPDM)/natural rubber (NR) vulcanized blends with the addition of N,N-m-phenylenebismaleimide (HVA-2) as a compatibilizer. Blends were prepared in several blend ratios in a Haake Polydrive with temperature and rotor speed of 180°C and 50 rpm, respectively. Results indicated that the combination of dicumyl peroxide (Dicup) with HVA-2 shows high torque development and stabilization torque as compared to the blend with Dicup vulcanization alone. In terms of tensile properties, the combination of Dicup with HVA-2 shows higher tensile strength, tensile modulus (M100), elongation at break, oil resistance, and gel content in all blend ratios compared to similar vulcanized blends with Dicup without HVA-2 addition. Scanning electron microscope (SEM) micrographs of the blends support that the cross-linking and compatibilization occur during the process of the vulcanized blend containing HVA-2. In the case of crystallinity of the blends, the addition of HVA-2 in Dicup vulcanized blend revealed a tendency for the percentage of crystallinity (Xc) to decrease. The addition of HVA-2 in Dicup vulcanization also produced blends with good thermal stability dealing with the so-called coagent bridge formation.  相似文献   

18.
The dependence of the morphology development of physical as well as of reactive compatibilized polypropylene/polyamide 6 (PP/PA6) blends in a mixing zone of a co‐rotating twin screw extruder on blend composition and screw rotational speed was investigated. A special process analytical set‐up based on a co‐rotating twin screw extruder was used, which allowed melt sampling from different positions along the operating extruder in time periods less than 10 seconds. It has been shown that the disperse particle sizes in physical blends depend crucially on the blend composition because of the increasing influence of coalescence with an increasing concentration of the disperse phase. Furthermore, the morphology of physical PP/PA6 blends depends strongly on their rheological properties. In contrast, the influence of the screw rotational speed on the morphology is minor. The resulting particle size in a mixing zone is achieved already after a short screw length. The particle size of compatibilized blends is significantly smaller than in physical blends because of the better conditions for drop break‐up and the suppression of coalescence effects. Due to this, compatibilization has a stronger influence on the blend morphology than a variation of process or rheological conditions with physical blends. Furthermore, the compatibilization leads to a concurrent crystallization of the PA6 phase with the PP phase.  相似文献   

19.
The reactivity of maleic anhydride and acrylic acid polypropylene graft copolymers with amine groups and their effect in the compatibilization of polymer blends was analyzed in real time during the reactive processing of compatilized polypropylene/polyamide 6 (PP/PA6) blends. The presence of compatibilizers in the blend produces a block copolymer PP‐PA6, which stays in the blends interface, lowering the interfacial tension and reducing the PA6 particle size, affecting the light extinction phenomena. The in‐line optical detector is able to indirectly quantify the conversion of the compatibilization reaction of the blends. The signal intensity of the detector increases with the increase of the PA6 content due to the increase in the number of particles. Quantitative off‐line FTIR analyses of the compatibilized blends have shown that the amount of block copolymer formed when polypropylene grafted with acrylic acid (PP‐g‐AA) is used as compatibilizer increases with its content in the blend. There is a good correlation between the in‐line optical measurement and the off‐line amidic bond content formed. Non‐reacted compatibilizers are always present in the reactive blends whose content is proportional to its initial concentration. The PA6 particle size data obtained from scanning electron microscopy analysis showed good correlation with the in‐line measurements. POLYM. ENG. SCI., 2010. © 2009 Society of Plastics Engineers  相似文献   

20.
通过不同方法制备了3种不同NBR/PP热塑性硫化胶(TPV),用差示扫描量热法研究TPV中PP的非等温结晶动力学,并分别利用Ozawa方程和莫志深方法对3种TPV中PP的非等温结晶行为进行解析。结果表明:TPV中NBR对PP的结晶起成核剂的作用,可提高PP的结晶速率,原位反应增容制备的TPV中PP的结晶速率最大;莫志深方法能很好地描述PP的非等温结晶过程。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号