首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
This article relates the fibrillation of liquid crystalline polymer (LCP) under shear in its blend with a thermoplastic polymer (TP) to the relative rate of energy utilization in the LCP and TP phases. The development of a criterion based on the energy relationship for predicting LCP fibrillation in the blend is discussed. The formation of LCP fibers in the blends of LCP with polycarbonate (PC), polyethylene naphthalate (PEN), high‐density polyethylene (HDPE), polypropylene (PP), and silica‐filled polypropylene (PP) was studied to validate the criterion and to demonstrate its applicability. For all the blends, viscosity data were obtained by using a capillary rheometer, which was subsequently used to estimate the rate of energy utilization in the LCP and the matrix phases. The predictions based on the proposed criterion were verified through the morphological investigations carried out on the extrudates obtained from the same capillary experiments. The energy‐based criterion was easy to implement, could account for the effect of variable LCP concentration and fillers in the blend, and could provide reliable predictions for a variety of LCP/TP blends. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 3314–3324, 2003  相似文献   

2.
Studies were conducted on the effects of shear rate, viscosity ratio and liquid crystalline polymer (LCP) content on the morphological and mechanical properties of polycarbonate (PC) and LCP blends. The LCP (LC5000) used was a thermotropic liquid crystalline polymer consisting of 80/20 of parahydroxybenzoic acid and poly(ethylene terephthalate) (PHB/PET). The viscosity ratio (viscosity of LCP: viscosity of matrix) was varied by using two processing temperatures. Due to the different sensitivity of materials to temperature, variation in the processing temperature will lead to varying viscosity of the components in the blends. Based on this principle, the processing temperature could be manipulated to provide a favourable viscosity ratio of below unity for fibre formation. To study the effect of shear rate, the flow rate of the blend and the mould thickness were varied. The shear rate has a significant effect on the fibrillation of the LCP phase. The effect was more prominent when the viscosity ratio was low and the matrix viscosity was high. At 5 wt% LCP, fibrillation did not occur even at low viscosity ratios and high shear rates. It was also observed that the LCP content must be sufficiently high to allow coalescence of the dispersed phase for subsequent fibrillation to occur. © 2002 Society of Chemical Industry  相似文献   

3.
Blends of polycarbonate (PC) and poly(ethylene terephthalate-co-p-oxybenzoate) (PET/PHB60) were prepared by melt-blending. Physical and/or chemical interactions between the two phases of the system were studied by thermal analysis and infrared spectroscopy. Rheological measurements in shear flow were carried out both in the low and high shear rate regions in the temperature range of the existence of the mesophase. At low liquid crystalline polymer (LCP) content, the blends showed flow curves similar to those of the unfilled PC, while at higher LCP percentages the rheological behavior of the pure LCP was resembled. Moreover, in the whole shear range, the viscosity values of such blends were in between those of the pure polymers. The influence of the addition of 10% LCP on the mechanical properties of the PC was investigated. Fiber-spinning was performed under different experimental conditions, and it was found that opportune drawing conditions are necessary to improve the modulus of the matrix. Morphological analyses of the pure LCP and of the blends were related to the rheological and mechanical behavior of these systems. While the LCP exhibited an elevated dimensional stability, the inclusion of the LCP in PC matrix did not improve the dimensional stability of the blends.  相似文献   

4.
The crystallization kinetics of a polyetheretherketone (PEEK)/liquid crystalline polymer (LCP) blend was studied by using differential scanning calorimetry. Nonisothermal runnings were performed on heating and on cooling at different rates. Isothermal crystallization experiments at 315, 312, 310, and 307°C, from the melt state (380°C) were performed in order to calculate the Avrami parameters n and k and the fold surface free energy, σe. Polarized light optical micrographs were also obtained to confirm the Avrami predictions. It was observed that the LCP retarded the PEEK crystallization process and that the PEEK melting temperature decreased with the amount of LCP, but the LCP melting temperature increased with the amount of PEEK. Probably the PEEK improves the perfection of the LCP crystalline domains. A spherulitic morphology in pure PEEK and its blends was predicted by the Avrami analysis; however this morphology was only observed for pure PEEK and for the 80/20 composition. The other compositions presented a droplet and fibrillar-like morphology. The overall crystallization rate was observed to decrease with the crystallization temperature for all compositions. Finally, σe was found to decrease with the increase of LCP in the blends, having unrealistic negative values. Thus, calculations were made assuming σe constant at all compositions. It was observed that δ, the interfacial lateral free energy, decreased but still remained positive. It was concluded that in these blends neither σe nor σ could be considered constant. © 1995 John Wiley & Sons, Inc.  相似文献   

5.
In situ compatibilization of immiscible blends of PEN and thermotropic LCP was achieved by the ultrasonically‐aided extrusion process. Ultrasonically‐treated PEN underwent degradation, leading to a decrease of its viscosity. Viscosity of LCP was unaffected by ultrasonic treatment. Because of reduced viscosity ratio of PEN to LCP at high amplitude of ultrasonic treatment, larger LCP domains were observed in molding of the blends. LCP acted as a nucleating agent, promoting higher crystallinity in PEN/LCP blends. Ultrasonically‐induced copolymer formation was detected by MALDI‐TOF mass spectrometry in the blends. Ultrasonic treatment of 90/10 PEN/LCP blends improved interfacial adhesion in fibers spun at intermediate draw down ratios (DDR), improving their ductility. The lack of improvement in the mechanical properties of fibers spun at high DDR after ultrasonic treatment was attributed to the disturbance of interfacial copolymer by high elongation stresses. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011.  相似文献   

6.
液晶聚合物增强PC/PET共混物挤出片材的性能研究   总被引:4,自引:0,他引:4  
冯建民  李忠明 《塑料工业》1997,25(5):83-84,90
介绍液晶聚合物对PC/PET共混体系的增强改性。选用了六种不同熔眯的LCP引入到PC/PET共混体系中,用自制的有利于形成定向的口模,将共混物挤出成片材,并测定了拉伸强度,维卡软化点,结晶速率,结果表明:在PC/PET共混物中,加入少量LCP后,拉伸强度可比原体系提高30%左右,不同熔点的LCP影响有差异,熔点太高的LCP反而会使体系的拉伸强度下降,维卡软化点未见明显变化,当增大LCP用量后,体系  相似文献   

7.
A novel concept of improving shear‐induced fibrillation of liquid crystalline polymer (LCP) in LCP/thermoplastic blend systems was introduced. Silica fillers (SiO2) were added to an LCP/polypropylene (PP) system to serve as a viscosity thickening agent and to improve the fibrillation of the LCP phase. The formation of LCP fibrils was found to enhance with the incorporation of 5–15 wt % of fillers. The presence of LCP fibrils improved the flow properties of the LCP/PP/SiO2 composites. It was evident from the rheological and morphological studies that the addition of silica led to an increase of the aspect ratio of the LCP fibrils, which, in turn, should improve their effectiveness as reinforcements and/or toughening agents. Substantial improvement in LCP aspect ratio was achieved by the introduction of hydrophobic SiO2 fillers in the PP/LCP blends. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 2070–2078, 2002  相似文献   

8.
The liquid crystalline polymer (LCP) and polyethylene terephthalate (PET) were blended in an elastic melt extruder to make samples having 20, 40, 60, 80, and 100 wt % of LCP. Morphology of these samples was studied using scanning electron microscopy. The steady state shear viscosity (η), dynamic complex viscosity (η*) and first normal stress difference (N1) were evaluated and compared at two temperatures: 265°C, at which LCP was in solid state, and 285°C, at which LCP was in molten state. The PET was in molten state at both the temperatures. The shear viscosity of the studied blends displayed its dependence on composition and shear rate. A maxima was observed in viscosity versus composition plot corresponding to 80/20 LCP/PET blend. The N1 increased with LCP loading in PET and with the increased asymmetry of LCP droplets. The N1 also varied with the shear stress in two stages; the first stage demonstrated elastic deformation, whereas second stage displayed dominant plastic deformation of LCP droplets. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 2212–2218, 2007  相似文献   

9.
Microfibrillar-reinforced composites based on two dispersed phases, liquid crystalline polymer (LCP) and recycled poly(ethylene terephthalate) (rPET), and polystyrene (PS) were prepared using extrusion process. The rheological behavior, morphology, and thermal stability of LCP/PS and rPET/PS blends containing various dispersed phase contents were investigated. All blends and LCP exhibited shear thinning behavior, whereas Newtonian fluid behavior was observed for rPET. The incorporation of both LCP and rPET into PS significantly improved the processability. The potential of rPET as a processing lubricant by bringing down the melt viscosity of the blend system was as good as LCP. The elongated LCP domains were clearly observed in as-extruded strand. Although the viscosity ratio of rPET/PS system was lower than that of LCP/PS system, most rPET domains appeared as small droplets. An addition of LCP and rPET into PS matrix improved the thermal resistance in air significantly. The obtained results suggested the high potential of rPET as a processing aid and thermally stable reinforcing-material similar to LCP. The mechanical properties of the LCP-containing blends were mostly higher than those of the corresponding rPET-containing blends when compared at the same blend composition.  相似文献   

10.
Jun Chen  Peng Chen  Lichuan Wu  Jun Zhang 《Polymer》2006,47(15):5402-5410
Induced by different fillers, various hydrodynamic effects enhance the fibrillation of liquid crystalline polymer (LCP) in in situ hybrid composites. Through choosing CaCO3 whisker as the filler and polysulfone (PSF) as the matrix, the effect of the filler size and the affinity between components on the morphological evolution of LCP droplets has been investigated. In contrast to the spherical or ellipsoidal droplets of LCP formed in binary PSF/LCP blends, the fibrillation of LCP was promoted by the introduction of whisker particles in all ternary blends at shear rates studied. The analysis of the flow field indicated that the predominant factors promoting the fibrillation of LCP were the vortex enhanced and elongational stress increased by the whisker in the converging flow area at the entrance of capillary, rather than the viscosity ratio and capillary number.  相似文献   

11.
The structural hierarchy in injection molded blends of poly(ethylene terephthalate) (PET) and a commercial liquid crystal polymer (LCP), two immiscible polymers, was characterized at various blend compositions. The macroscopic core and skin have a gradient structure and are subdivided into ordered and disordered layers. The sublayers consist of rodlike domains at 25% LCP. The domains become thinner, longer, and more fibril-like with increasing LCP concentration. The interconnection between the LCP domains also becomes more significant at higher LCP concentrations. The highest degree of orientation in the injection direction is at the mold surface and the lowest at the sample center. The LCP orientation reflects the elongational and fountain flow in the mold and increases with increasing LCP concentration. Schematic structural models were used to illustrate the levels of structure in these blends. A minimum exists in the tensile strength, elongation at break, and impact strength with varying blend composition at approximately 50% LCP. The tensile strength of the LCP-rich blends is significantly lowered by the presence of a weldline or an angle between the stress and orientation directions. The unique mechanical properties of the LCP depend on the formation of a highly oriented and highly connected hierarchical structure that does not exist in blends with 75% or less LCP.  相似文献   

12.
王彩红  周秉正  何敏  鲁圣军 《聚氯乙烯》2011,39(12):16-18,24
采用低熔点尼龙6(LPA6)/液晶高分子(LCP)复合物对PVC进行共混改性,研究了LPA6/LCP含量对PVC/LPA6/LcP共混物力学性能及维卡软化温度的影响。结果表明:加入质量分数为10%以下的LPA6/LCP,可明显提高共混物的弯曲强度及弯曲模量;加入质量分数为30%以下的LPA6/LcP,可明显提高共混物的...  相似文献   

13.
This article reveals that the already known improved properties of the thermoplastic–liquid crystalline polymer (LCP) blends can be further improved substantially over the corresponding noncompatibilized counterparts by using a reactive in situ type compatibilizer, the styrene–glycidyl methacrylate (SG) copolymer. This SG copolymer has been demonstrated in this article to be an effective reactive compatibilizer to improve the processability, heat deflection temperature, and mechanical properties of Noryl/LCP blends. The epoxy functional groups of the SG copolymer can react with the end groups of PPO (in Noryl) and LCP. The in situ-formed SG–g–LCP copolymer tends to reside along the interface of Noryl–LCP and reduces the interfacial tension during melt processing. The resultant LCP fibers in the Noryl matrix of the compatibilized blends have a higher aspect ratio because the fibers become finer, longer, and tend to form lamellate domains with a greater interphase contact area than those from the noncompatibilized blends. The compatibilized blends also improve the interphase adhesion between Noryl and LCP. The presence of ethyl triphenylphosphonium bromide catalyst promotes the grafting reaction to improve blend compatibilization. © 1995 John Wiley & Sons, Inc.  相似文献   

14.
The morphology of blends of polycarbonate and nylon 6,6 with a copolyester of 60 mole percent p-hydroxybenzoic acid/40 mole percent poly(ethylene terephthalate) was characterized under different processing conditions. In particular, single-screw extrusion, steady simple shear flow, and flow through a capillary were studied to determine what conditions were necessary for the development of a fibrillar morphology of the liquid crystalline polymer (LCP). Results indicate that some extensional flow is required for the coalescence and extension of the particulate LCP phase. The viscosity of the blends was determined both in a cone-and-plate geometry of a Rheometrics Mechanical Spectrometer at low shear rates and in the Instron Capillary Rheometer at higher rates. In general, only a small (10 or 30 percent) weight fraction of LCP was required to reduce the viscosity of the thermoplastics to that of the polymeric liquid crystal. An attempt was made to correlate the structure of the blends seen under the scanning electron microscope with the observed rheology. Not all aspects of the morphology were possible to explain in terms of the viscous properties of the blends.  相似文献   

15.
Polypropylenes (PP) of various molecular weights were mixed with a thermotropic liquid crystal polymer (LCP) and strands were prepared by extrusion and stretching. The strands were subsequently pelletized and then injection molded at temperatures below the melting point of LCP. The mechanical properties and the morphology of the strands and injection‐molded specimens were investigated as a function of draw ratio, LCP concentration, and PP molecular weight. The results for strands show that an increase in the draw ratio, LCP concentration and matrix molecular weight in general enhance the modulus and tensile strength. However, the tensile properties of injection‐molded specimens are found to be reduced compared with those of the original strands, in particular at high LCP concentration. The morphology of LCP changes from spherical or ellipsoidal droplets to elongated fibrils in the strands as the draw ratio increases, but this aligned LCP fibrillar morphology was not transferred to the injection‐molded specimens because of the disorientation of fibrils during injection molding. Compatibilization of PP/LCP blends was also studied by using various polymers. Maleic anhydride and acrylic acid modified PPs improved the tensile properties modestly, but maleic anhydride modified EPDM reduced the tensile properties.  相似文献   

16.
The rheology, morphology and properties of the composite systems of LCP, Vectra ATM 950 and Nylon 66 were investigated. The viscocity ratio of LCP and matrix has strong influence on their morphology. For LCP blends, the viscosity ratio of LCP is a critical factor in determining the blend morphology. The optical micrographs show that the good fibrillation can be achieved when the viscocity of the dispersed LCP phase is less than that of the Nylon 66 matrix at 310°C. The dispersed LCP domains tend to be spherical or cluster‐like when the viscosity ratio of the disperesed LCP phase and the Nylon 66 matrix is more than 1 at 280°C. The scanning electron microscopy (SEM) and optical micrograph observations show that Nylon 66 is immiscible with LCP, and there are two distinct phases in the blends. The morphology of LCP phase changes with the composition. LCP exhibits a fine fibril dispersed phase in the Nylon 66 matrix in the low LCP concentration. With an increase in LCP concentration, the morphology of LCP phase is changed form a fine fibril dispersed phase to a perfectly aligned continuous fiber reinforced phase in the rich LCP concentration. The tensile moduli increase with LCP concentration, especially in the rich LCP concentration. The tensile strengths increase with LCP concentration only when LCP concentration is above 40 wt%. Compared to the pure Nylon 66 fiber, the 40 wt% LCP composite sample shows a 982.1% increase in tensile modulus and a 123.3% increase in tensile strength. The mechanical properties of composite fibers are below the rule of mixtures if the LCP concentration is low, but above the rule of mixtures if the LCP concentration is high.  相似文献   

17.
A thermotropic liquid crystalline polyester (LCP) based on 4-hydroxyacetophenone azine and sebacoyl dichloride was synthesized via a low-temperature solution route. The liquid crystalline polymer was characterized by 1H-NMR, DSC, GPC, and polarizing microscopy experiments. The LCP was melt-blended with poly(butylene terephthalate) (PBT), followed by the melt-spinning process at take-up speeds ranging from 14 to 50 m/min. We analyzed the molecular orientational order of LCP and PBT in as-spun fibers of the LCP/PBT blends by the attenuated total reflection (ATR) FTIR dichroism technique and WAXS. The order parameter (S), representing the molecular orientational order, of LCP in the polyblend fibers increased as the employed LCP amounts and the draw ratio increased. Moreover, the order parameter of PBT in the blends increased dramatically when sufficiently large amounts of LCP (over 50 wt %) were employed, especially for highly drawn fibers, which suggested a considerable miscibility between LCP and PBT. The thermal behavior of the blends investigated by DSC also indicated that the synthesized LCP was miscible, at least partially, with PBT. All these results correlated with the enhancement of mechanical properties observed for higher concentrations of LCP in the blends and for highly drawn samples. © 1996 John Wiley & Sons, Inc.  相似文献   

18.
Binary blends of a reactive ethylene-based terpolymer with polybutylene terephthalate (PBT) and with a liquid crystalline polyester (LCP) were studied to clarify the possible interactions between the blended polymers. The aim was to determine the suitability of the reactive terpolymer containing epoxy reactivity as a compatibilizer in blends of polypropylene (PP) and these two polyesters. The binary blends exhibited increased viscosity during blending, changes in the crystallization of the PBT phase, and an intimate contact between the blended polymers, which pointed to strong interactions or chemical reactions between the compatibilizer and both PBT and LCP. FTIR analysis confirmed the reaction of the epoxide and formation of new esters. Most probably the carboxyl end groups of the polyesters reacted with the epoxy group of the compatibilizer. In the second part of the work the same terpolymer was shown to act as a compatibilizer in PP/PBT and PP/LCP blends. This behavior was based on good mixing with the PP phase and on the chemical reactivity or strong interactions with the polyesters demonstrated in the investigations on binary blends. Addition of 5 wt% of the compatibilizer improved the impact strength, especially in PP/PBT blends where synergistic behavior was found at compositions of 80/20 and 20/80. In PP/LCP blends, the compatibilizer significantly improved the impact strength of unnotched samples at 20 wt % LCP content. In both blends, the compatibilizer reduced the size of the dispersed domains and caused them to attach better in the matrix. © 1995 John Wiley & Sons, Inc.  相似文献   

19.
Blends of ethylene propylene rubber (EPR) and thermotropic liquid crystalline polymer (TLCP) have been prepared by melt-mixing technique. Processing studies indicated the decrease in the viscosity of the blends with the addition of LCP. The mechanical properties like tensile strength and modulus increased up to 10% of LCP and then decreased. The crystallinity increased with an increase in the LCP content. At higher levels of LCP, crystal growth is favored. Thermal studies indicated the endothermic signals that were more prominent at all the peak temperatures. The surface degradation increases with an increase in elastomer (EPR) content in the blend. The relaxation phenomena, as observed from Dynamic Mechanical Thermal Analysis (DMTA) analysis, are changing depending on the blend ratio. The dynamic modulus and stiffness increased with the addition of LCP in the blend. Under dynamic application, at higher levels of LCP, it was observed from scanning electron microscope that there were no cracks at the interface between the EPR and the glass fibers suggesting the better wetting of the fibers by the EPR.  相似文献   

20.
Abstract

The effects of blend compositions on the mechanical and thermal properties of polymer blends containing Nylon 66 and a thermoplastic elastomer (TPE), Santoprene®, have been studied. A 5% styrene/acrylonitrile copolymer was added to neat Nylon, TPE, and their blends. The blends were injection moulded and the tensile and impact properties were investigated. The morphology and thermal properties of the blends were observed using scanning electron microscopy and differential scanning calorimetry.

The presence of double melting temperatures showed that the Nylon 66 and TPE are immiscible. However, blending produced a modification of mechanical and thermal properties. At TPE/Nylon ratios above 50 : 50 the tensile properties of TPE improved. In addition the impact properties of Nylon improved above the 50 : 50 ratio, i.e. in the TPE rich region. Both the melting temperature and crystallinity were depressed in the region of 50 : 50 blend composition. The presence of two phases, which is evidence of immiscibility of the blends, was confirmed by scanning electron microscopy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号