首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Full (interpenetrating networks (IPNs)) and semi-IPNs of the epoxy resin and poly(ethyl methacrylate) (PEMA) were prepared by the sequential mode of synthesis. These were characterized with respect to their mechanical properties, namely, tensile strength, elongation at break, modulus, and toughness. Thermal properties were studied by differential scanning calorimetry and thermogravimetry. The morphological features were studied through scanning electron microscopy (SEM) and polarized light microscopy. The effects of variation of the blend ratios on the above-mentioned properties were examined. There was a gradual decrease of modulus and tensile strength with consequent increases in elongation at break and toughness for both types of IPNs with increases in PEMA content. The weight retentions in the thermal decomposition of both the semi-IPNs and full IPNs were higher than the epoxy homopolymer. This enhancement was presumably related to the presence of the unzipped ethyl methacrylate monomer, which acted as radical scavengers in the epoxy degradation. An inward shift and lowering (with respect to pure epoxy) of the Tg of the IPNs was observed. The polarized light microscopy exhibits bimodal distribution of particle sizes. The fractography as studied by SEM shows change in fracture mechanics from shear yielding to crazing with increasing PEMA content. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 67:1051–1059, 1998  相似文献   

2.
Both full and semi-interpenetrating polymer networks (IPNs) of polybutadiene and poly(methyl methacrylate) were synthesized by sequential polymerization. The effect of compositional variation and the cross-linking agent of both elastomer and plastomer on the physical, mechanical, and morphological properties were investigated. Full-IPNs exhibited improved tensile strength, modulus, tear strength, gel content, and density, whereas the corresponding semi-IPNs exhibited better toughness and elongation at break. Phase morphology of full-IPNs were characterized by compact, tight network structures compared to those of semi-IPNs. © 1994 John Wiley & Sons, Inc.  相似文献   

3.
A series of interpenetrating polymer networks (IPNs) based on carboxylated nitrile rubber (XNBR) and poly(alkyl methacrylate)s such as poly(methyl methacrylate) (PMMA), poly(ethyl methacrylate) (PEMA) and poly(butyl methacrylate) (PBuMA) were synthesized. The compositions of the IPNs were also varied by changing the swelling time of the rubber in the methacrylate monomer. The tensile and dynamic mechanical properties of the IPNs were studied. The dynamic mechanical properties in the range of 1–105 Hz were obtained by the time‐temperature superposition of the data under multifrequency mode, which indicated high tanδ with good storage modulus in the entire frequency range. This indicates the suitability of these IPNs as vibration and acoustic dampers.  相似文献   

4.
Full and semi interpenetrating polymer networks (IPNs) based on phenol‐formaldehyde resin (Novolac) and poly(methyl methacrylate) have been made by in situ sequential technique of IPN formation. These systems of different compositions were characterized with respect to their mechanical properties, such as, ultimate tensile strength (UTS), percentage elongation at break, modulus, and toughness. Thermal properties were studied by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). Extent of phase mixing of the two polymers was envisaged from the micrographs obtained by polarizing light microscopy (PLM). The effects of variation of the blend ratios on the above‐mentioned properties were examined. There was a decreasing trend of modulus and UTS with consequent increases in elongation at break and toughness for both types of IPNs with increase in proportions of PMMA. Lowering of glass transition temperatures (with respect to pure crosslinked Novolac resin) of the IPNs with increasing proportions of PMMA was observed, indicating a plasticizing influence of PMMA on the rigid and brittle matrix of phenolic resin. The TGA thermograms exhibit lowering in thermal stability of the IPNs with respect to pure phenolic resin in the regions of higher temperatures. With increase in proportion of PMMA the onset of degradation of the IPNs is shifted towards lower temperature zone. The surface morphology as revealed by PLM indicates distribution of discrete domains of PMMA in the phenolic resin matrix. The two phase interfaces are quite sharp at higher concentrations of PMMA. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 2764–2774, 2004  相似文献   

5.
Full interpenetrating networks (IPNs) and semi‐IPNs of Novolac (phenolic) resin and poly(ethyl methacrylate) (PEMA) were prepared by the sequential mode of synthesis. These were characterized with respect to their mechanical properties, that is, ultimate tensile strength (UTS), percentage elongation at break, modulus, and toughness. Thermal properties were studied by DSC and thermogravimetric analysis (TGA). The morphological features were studied through polarizing light microscopy (PLM). The effects of variation of the blend ratios on the above‐mentioned properties were examined. There was a gradual decrease of modulus and UTS with consequent increases in elongation at break and toughness for both types of IPNs with increasing proportions of PEMA. An inward shift and lowering (with respect to pure phenolic resin) of the glass‐transition temperatures of the IPNs with increasing proportions of PEMA were observed, thus indicating a plasticizing influence of PEMA on the rigid and brittle matrix of crosslinked phenolic resin. The TGA thermograms exhibit two‐step degradation patterns. Although there was an apparent increase in thermal stability at the initial stages, particularly at lower temperatures, a substantial decrease in thermal stability was observed in the regions of higher temperatures. The surface morphology as revealed by PLM clearly indicates two‐phase structures in all the full and semi‐IPNs, irrespective of PEMA content. The matrix–PEMA domain interfaces are quite sharp at higher concentrations of PEMA. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 412–420, 2003  相似文献   

6.
Interpenetrating polymer networks (IPNs) based on a nitrile rubber (NBR)–phenolic resin (PH) blend and poly(alkyl methacrylates) were synthesized by a sequential method. The cured blends were swollen in a methacrylate monomer containing a crosslinker and initiator. The swollen rubber sheets were cured at 60°C. From the swelling study of the monomer, it was found that IPN formation in the blend is in between the rubber and poly(alkyl methacrylate) phases only. The IPNs thus formed were characterized for their tensile, dynamic mechanical, and solvent-resistance characteristics. The tensile strength of the IPNs are dependent on the PH content; at a lower content of PH (up to 20 parts), IPNs have a higher strength compared to their corresponding blends, whereas at a higher content of PH (beyond 30 parts), the strength decreases. But for every NBR/PH-fixed composition, the strength of IPNs was found to be increasing in the order of PBuMA < PEMA < PMMA. The dynamic property results showed that NBR/PH blends are incompatible. The storage modulus of IPNs are always higher than their corresponding blends at all temperatures. The tan δ peaks of IPNs are broad, indicating the presence of microphase-separated domains. The IPNs show superior solvent-resistance characteristics compared to the blends. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 68:255–262, 1998  相似文献   

7.
Semi‐interpenetrating polymer networks (semi‐IPNs) of epoxy resin and poly(methyl methacrylate) (PMMA) were synthesized. Methyl methacrylate (MMA) was polymerized by free radical mechanism with azo‐bis‐isobutyronitrile in the presence of oligomeric epoxy resin (DGEBA), and hexahydrophthalic anhydride as crosslinking agent. The gelation and vitrification transitions during cure/polymerization processes have been examined using parallel‐plates rheological technique. From differential scanning calorimetry and rheological techniques, it was suggested that both curing and polymerization processes occur simultaneously. However, the gelation time was longer for the semi‐IPN than those observed for the cure of pure DGEBA or polymerization of MMA. The gelation time increased significantly when 5% of MMA was employed, suggesting a diluent effect of the monomer. Higher amount of MMA resulted in a decrease of gel time, probably because of the simultaneous polymerization of MMA during the curing process. Structural examination of the semi‐IPNs, using scanning electron microscopy, revealed phase separation in nanoscale size for semi‐IPNs containing PMMA at concentrations up to 15%. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

8.
Semi- and full interpenetrating polymer networks (IPNs) of epoxy resin and poly(butyl methacrylate) (PBMA) were prepared by the sequential mode of synthesis. These were characterized with respect to their mechanical properties, such as ultimate tensile strength, percent elongation at break, and modulus. The densities of these samples were evaluated and compared. Differential scanning calorimetry (DSC) and thermogravimetric analysis were undertaken for thermal characterization of the IPNs. Phase morphology was studied by polarized light microscopy of the undeformed specimens and by scanning electron microscopy of the fractured surfaces of samples undergoing tensile failure. The effects of variations of the blend ratios on the above-mentioned properties were examined. A gradual decrease in modulus and tensile strength was observed for both the semi- and full IPNs with consequent increases in elongation at break and toughness as the proportion of PBMA increased. The densities also followed the same pattern. Semi-IPNs, however, were characterized by higher densities, tensile strengths, and moduli than the corresponding full IPNs. The DSC tracings displayed broadening of transitions, indicating some phase blending. The percent weight retentions in the thermal decomposition of the IPNs and pseudo-IPNs were higher than that observed during the thermal degradation of the epoxy resin homopolymer network. Phase-separated PBMA domains of various sizes were presumed to be responsible for the increased toughness of PBMA-modified epoxy. © 1996 John Wiley & Sons, Inc.  相似文献   

9.
Sequential interpenetrating polymer networks (IPNs) based on nitrile rubber and various types of polyalkyl methacrylates such as poly(n-butyl methacrylate), poly(ethyl methacrylate), and poly(methyl methacrylate) were synthesized. The compositions of the IPNs could be varied by varying the reaction parameters such as swelling time and concentration of crosslinker. The tensile properties of the IPNs show that with increase in bulkiness of the ester group of the acrylates the tensile strength decreases, whereas elongation at break increases because of decreased stiffness of the acrylate phase. The dynamic modulus and loss tangent of the IPNs also show similar trend because of the above reason. All the IPNs were also tested for dynamic properties under multifrequency mode, and with the help of the WLF equation, the behavior of these IPNs in the frequency range of 1–105 Hz were evaluated. The results showed reasonably high tan δ with good storage modulus in the entire frequency range for all the IPNs. © 1997 John Wiley & Sons, Inc. J Appl Polm Sci 65:549–554, 1997  相似文献   

10.
Abstract

Three component IPNs Glass fibre reinforced composites (GRC) have been prepared from acetone-formaldehyde-phenol (AF-P) resin, Diglycedyl ether of bisphenol-A (DGEBA) (a commercial epoxy resin) and methyl methacrylate (MMA) (a vinyl monomer). The curing catalyst hexamethylene tetramine (HMTA) for AF-P, radical initiators 2,2′-azobisisobutyronitrile (AIBN) for MMA and curing catalyst 4,4′-diamino diphenyl methane (DDM) for epoxy resin were employed. All the IPN GRCs were characterized in terms of their resistance to chemical reagents, thermal behaviour (DSC, TGA) and mechanical properties.  相似文献   

11.
Sequential interpenetrating polymer networks (IPNs) based on nitrile rubber and poly(methyl methacrylate) (PMMA) were synthesized. IPN compositions were varied by varying the swelling time. Two methods were adopted for making IPNs. The first method is “single‐step IPN” (SIPN) and the second method is “multistep IPN” (MIPN). The compositions were fixed around 90, 80, 70, 60 and 50% of NBR. In SIPN mode, swelling in monomer and subsequent curing was done once. In MIPN mode, swelling in monomer and curing was repeatedly done. Tensile strength of IPNs was found to increase with PMMA content, MIPN showing higher strength compared to SIPN. Dynamic modulus showed a similar trend. The tan δ value was found to decrease with PMMA content. At 62/38 nitrile rubber (NBR)/PMMA, MIPN composition isolated tan δ peaks appeared near glass transition temperatures of NBR and PMMA, respectively. Scanning electron micrograph showed phase‐separated morphology at the same MIPN composition. Solvent resistance increased with IPN formation maintaining higher resistance for MIPN compared to SIPN. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 354–360, 2004  相似文献   

12.
Semi-interpenetrating polymer networks (IPNs) are prepared from poly methyl methacrylate and 2-hydroxy ethyl acrylate networks with the presence of super-paramagnetic ferric oxide nanoparticles (<30 nm) through free radical polymerization. PMMA/PHEA semi-IPNs having blend ratio 60:40, 50:50, 40:60 (wt/wt) are characterized with respect to swelling, crosslink density, FTIR, DSC, TGA, SEM, and drug loading and drug release properties. Bactericidal effect on IPNs is checked by cell growth study of E. coli.  相似文献   

13.
Three series of interpenetrating polymer networks (IPNs) based on a polyurethane (castor oil + toluene diisocyanate) with polystyrene, poly(methyl methacrylate), and poly(n-butyl methacrylate) were synthesized and characterized. Dielectric relaxation studies of these IPNs were carried out from ?150 to 100°C in the 100 Hz to 100 kHz range. The effects of structural variables such as composition, type of vinyl monomer, as well as the effect of interaction of the phases on the dielectric properties were studied. A certain degree of phase mixing was observed to exist in all series as detected by the variation of the glass-transition temperatures of the IPNs. Maxwell–Wagner–Sillars polarization at the interface of the two phases was observed. © 1994 John Wiley & Sons, Inc.  相似文献   

14.
Interpenetrating networks (IPNs) of novolac (phenol formaldehyde) resin and poly(butyl acrylate) (PBA) were prepared by a sequential mode of polymerization. Both full IPNs and semi‐IPNs of different compositions were synthesized and characterized with respect to their mechanical properties, that is, their modulus, ultimate tensile strength (UTS), elongation‐at‐break percentage, and toughness. Their thermal properties were examined with differential scanning calorimetry and thermogravimetric analysis (TGA). A morphological study was performed with an optical microscope. The effects of the variation of the blend ratios on the aforementioned properties were studied. There was a gradual decrease in the modulus and UTS with a simultaneous increase in the elongation‐at‐break percentage and toughness for both types of IPNs as the proportions of PBA were increased. With increasing proportions of PBA, the glass‐transition temperatures of the different IPNs underwent shifts toward a lower temperature region. This showed a plasticizing influence of PBA on the rigid and brittle phenolic matrix. TGA thermograms depicted the classical two‐step degradation for the phenolic resin. Although there was an apparent increase in the thermal stability at the initial stage (up to 350°C), particularly at lower temperatures, a substantial decrease in the thermal stability was observed at higher temperatures under study. In all the micrographs of full IPNs and semi‐IPNs, two‐phase structures were observed, regardless of the PBA content. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 97: 2407–2417, 2005  相似文献   

15.
Novolac resin/poly(n‐butyl methacrylate), P(n‐BMA), sequential interpenetrating polymer networks (both semi and full types) were prepared and characterization of the various compositions (up to 40% by weight of PF incorporation) was performed in terms of mechanicals, namely, ultimate tensile strength (UTS), percentage elongation at break (% E.B.), modulus, and toughness. Thermal properties were studied by differential scanning calorimetry and thermogravimetric analysis (TGA). Crosslink densities of the IPNs were calculated using Flory‐Rehner equation. The morphological features were studied through scanning electron microscope. There was a gradual decrease of modulus and UTS with consequent increases in % E. B. and toughness with increasing proportions of P(n‐BMA). An inward shifting and lowering of the glass transition temperatures of the IPNs (compared with that of pure phenolic resin) with increasing proportions of P(n‐BMA) were observed. The TGA thermograms exhibit two‐step degradation patterns. A typical cocontinuous bi‐phasic morphology is evident in the micrographs. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 4030–4039, 2006  相似文献   

16.
The mechanical properties of blocked polyurethane(PU)/epoxy interpenetrating polymer networks (IPNs) were studied by means of their static and damping properties. The studies of static mechanical properties of IPNs are based on tensile properties, flexural properties, hardness, and impact method. Results show that the tensile strength, flexural strength, tensile modulus, flexural modulus, and hardness of IPNs decreased with increase in blocked PU content. The impact strength of IPNs increased with increase in blocked PU content. It shows that the tensile strength, flexural strength, tensile modulus, and flexural modulus of IPNs increased with filler (CaCO3) content to a maximum value at 5, 10, 20, and 25 phr, respectively, and then decreased. The higher the filler content, the greater the hardness of IPNs and the lower the notched Izod impact strength of IPNs. The glass transition temperatures (Tg) of IPNs were shifted inwardly compared with those of blocked PU and epoxy, which indicated that the blocked PU/epoxy IPNs showed excellent compatibility. Meanwhile, the Tg was shifted to a higher temperature with increasing filler (CaCO3) content. The dynamic storage modulus (E′) of IPNs increased with increase in epoxy and filler content. The higher the blocked PU content, the greater the swelling ratio of IPNs and the lower the density of IPNs. The higher the filler (CaCO3) content, the greater the density of IPNs, and the lower the swelling ratio of IPNs. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 1826–1832, 2006  相似文献   

17.
Macro/mesoporous polydimethylsiloxanes (PDMS) were prepared with the purpose of vascular grafts. Oligoester-containing semi-interpenetrating polymer networks (semi-IPNs) can be used as precursors for generation of networks with tunable pore sizes. Novel poly(methyl methacrylate)/PDMS semi-IPNs were prepared by varying structural parameters. Extraction of uncrosslinked oligoester subchains from semi-IPNs was investigated. To tailor the morphology of porous structure, influence of some factors including porogen type, different polymerization conditions, monomer type, and concentration, crosslinking agent concentration were studied. PDMS networks were examined by field emission scanning electron microscopy. A uniform porous structure with interconnected pores was detected in horizontal and vertical cross sections of PDMS.  相似文献   

18.
Semi‐1 and semi‐2 interpenetrating polymer networks (IPNs) of poly(vinyl chloride) (PVC) and in situ formed poly(butyl methacrylate) (PBMA) have been synthesized using diallyl phthalate and ethylene glycol dimethacrylate as the crosslinkers of PVC and PBMA, respectively. These were then characterized with reference to their mechanical, thermal, and morphological properties. The mechanical and thermal characteristics revealed modification over the unmodified polymeric systems in relation to their phase morphologies. The semi‐1 IPNs displayed a decrease in their mechanical parameters of modulus and UTS while semi‐2 IPNs exhibited a marginal increase in these two values. The semi‐1 IPNs, however, also revealed a decrease in the elongation and toughness values away from the normal behavior. The thermomechanical behavior of both the systems is in conformity with their mechanicals in displaying the softening characteristics of the system and stabilization over unmodified PVC. The DSC thermograms are also correlated to these observations along with the heterogeneous phase morphology which is displayed by both the systems especially at higher concentration of PBMA incorporation. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

19.
Castor oil containing hydroxyl functionality was reacted with 4,4′-diphenylmethanediisocyanate under different stoichiometric ratios of NCO/OH to obtain liquid polyurethanes. These polyurethanes were subsequently interpenetrated with methyl acrylate monomer using ethylene glycol dimethacrylate as a crosslinker by radical polymerization using benzoyl peroxide as an activator. The polyurethane/poly(methyl acrylate) interpenetrating polymer networks (PU/PMA IPNs) were obtained as tough films by transfer molding techniques. All IPNs were characterized by their resistance to chemical reagents, optical properties, thermal behavior, and mechanical properties: tensile strength, Young's modulus, elongation at break (%) and hardness Shore A. The morphology of the IPNs was studied by scanning electron microscopy and dielectric properties: electrical conductivity (σ), dielectric constant (?′), dielectric loss (?″), and loss tangent (tan δ) at different temperatures.  相似文献   

20.
Interpenetrating polymer networks (IPN) of Novolac/poly(ethyl acrylate) have been prepared via in situ sequential technique of IPN formation. Both full and semi IPNs were characterized with respect to their mechanical properties that is, ultimate tensile strength (UTS), percentage elongation at break, modulus, and toughness. Physical properties of these were evaluated in terms of hardness, specific gravity, and crosslink density. Thermal behavior was studied by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The morphological features were observed by an optical microscope. There was a gradual decrease in modulus and UTS, with consequent increases in elongation at break and toughness for both types of IPNs with increasing proportions of PEA. An inward shift and lowering (with respect to pure phenolic resin) of the glass transition temperatures of the IPNs with increasing proportions of PEA were observed, thus, indicating a plasticizing influence of PEA on the rigid, brittle, and hard matrix of crosslinked phenolic resin. The TGA thermograms exhibit two‐step degradation patterns. An apparent increase in thermal stability at the initial stages, particularly, at lower temperature regions, was followed by a substantial decrease in thermal stability at the higher temperature region under study. As expected, a gradual decrease in specific gravity and hardness values was observed with increase in PEA incorporation in the IPNs. A steady decrease in crosslink densities with increase in PEA incorporation was quite evident. The surface morphology as revealed by optical microscope clearly indicates two‐phase structures in all the full and semi IPNs, irrespective of acrylic content. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci, 2006  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号